Nikhil M Urs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8052232/publications.pdf

Version: 2024-02-01

33	1,092	17 h-index	31
papers	citations		g-index
38	38	38	1807
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Distinct cortical and striatal actions of a l̂²-arrestin–biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8178-E8186.	7.1	117
2	A Dopamine D1 Receptor-Dependent \hat{l}^2 -Arrestin Signaling Complex Potentially Regulates Morphine-Induced Psychomotor Activation but not Reward in Mice. Neuropsychopharmacology, 2011, 36, 551-558.	5.4	101
3	New Concepts in Dopamine D2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biological Psychiatry, 2017, 81, 78-85.	1.3	99
4	Targeting β-arrestin2 in the treatment of <scp>l</scp> -DOPA–induced dyskinesia in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2517-26.	7.1	91
5	Deletion of GSK3 \hat{l}^2 in D2R-expressing neurons reveals distinct roles for \hat{l}^2 -arrestin signaling in antipsychotic and lithium action. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20732-20737.	7.1	78
6	Elucidation of G-protein and \hat{l}^2 -arrestin functional selectivity at the dopamine D2 receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7097-7102.	7.1	75
7	G Protein and β-Arrestin Signaling Bias at the Ghrelin Receptor. Journal of Biological Chemistry, 2014, 289, 33442-33455.	3.4	64
8	\hat{l}^2 -arrestin-2 is an essential regulator of pancreatic \hat{l}^2 -cell function under physiological and pathophysiological conditions. Nature Communications, 2017, 8, 14295.	12.8	63
9	A requirement for membrane cholesterol in the \hat{l}^2 -arrestin- and clathrin-dependent endocytosis of LPA1 lysophosphatidic acid receptors. Journal of Cell Science, 2005, 118, 5291-5304.	2.0	50
10	D ₁ Dopamine Receptor Coupling to PLC \hat{l}^2 Regulates Forward Locomotion in Mice. Journal of Neuroscience, 2013, 33, 18125-18133.	3.6	46
11	Hepatic \hat{l}^2 -arrestin 2 is essential for maintaining euglycemia. Journal of Clinical Investigation, 2017, 127, 2941-2945.	8.2	40
12	ML314: A Biased Neurotensin Receptor Ligand for Methamphetamine Abuse. ACS Chemical Biology, 2016, 11, 1880-1890.	3.4	33
13	Integrated approaches to understanding antipsychotic drug action at GPCRs. Current Opinion in Cell Biology, 2014, 27, 56-62.	5.4	25
14	Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. Journal of Neurochemistry, 2021, 158, 960-979.	3.9	22
15	Dopamine D2 Receptor Relies upon PPM/PP2C Protein Phosphatases to Dephosphorylate Huntingtin Protein. Journal of Biological Chemistry, 2014, 289, 11715-11724.	3.4	21
16	Selective Deletion of GRK2 Alters Psychostimulant-Induced Behaviors and Dopamine Neurotransmission. Neuropsychopharmacology, 2014, 39, 2450-2462.	5.4	19
17	Different Mechanisms Regulate Lysophosphatidic Acid (LPA)-dependent Versus Phorbol Ester-dependent Internalization of the LPA1 Receptor. Journal of Biological Chemistry, 2008, 283, 5249-5257.	3.4	18
18	Deletion of Glycogen Synthase Kinase-3β in D2 Receptor–Positive Neurons Ameliorates Cognitive Impairment via NMDA Receptor–Dependent Synaptic Plasticity. Biological Psychiatry, 2020, 87, 745-755.	1.3	17

#	Article	IF	Citations
19	Beneficial metabolic role of β-arrestin-1 expressed by AgRP neurons. Science Advances, 2020, 6, eaaz1341.	10.3	17
20	Defining Structure–Functional Selectivity Relationships (SFSR) for a Class of Non-Catechol Dopamine D ₁ Receptor Agonists. Journal of Medicinal Chemistry, 2019, 62, 3753-3772.	6.4	15
21	α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability. Npj Parkinson's Disease, 2021, 7, 76.	5.3	14
22	Ghrelin receptor antagonism of hyperlocomotion in cocaineâ€sensitized mice requires βarrestinâ€2. Synapse, 2018, 72, e22012.	1.2	12
23	Slow-release delivery enhances the pharmacological properties of oral 5-hydroxytryptophan: mouse proof-of-concept. Neuropsychopharmacology, 2019, 44, 2082-2090.	5.4	10
24	Loss of βâ€arrestin2 in D2 cells alters neuronal excitability in the nucleus accumbens and behavioral responses to psychostimulants and opioids. Addiction Biology, 2020, 25, e12823.	2.6	9
25	Targeting \hat{I}^2 -Arrestins in the Treatment of Psychiatric and Neurological Disorders. CNS Drugs, 2021, 35, 253-264.	5.9	8
26	Retrograde Labeling Illuminates Distinct Topographical Organization of D1 and D2 Receptor-Positive Pyramidal Neurons in the Prefrontal Cortex of Mice. ENeuro, 2020, 7, ENEURO.0194-20.2020.	1.9	8
27	Structure–Functional–Selectivity Relationship Studies of Novel Apomorphine Analogs to Develop D1R/D2R Biased Ligands. ACS Medicinal Chemistry Letters, 2020, 11, 385-392.	2.8	6
28	A role for cortical dopamine in the paradoxical calming effects of psychostimulants. Scientific Reports, 2022, 12, 3129.	3.3	4
29	Methods to Investigate the Role of β-Arrestin Signaling in Parkinson's Disease. Methods in Molecular Biology, 2019, 1957, 385-391.	0.9	3
30	Retrograde Labeling Illuminates Distinct Topographical Organization of D1 and D2 Receptor-Positive Pyramidal Neurons in the Prefrontal Cortex of Mice. ENeuro, 2020, 7, .	1.9	2
31	Structure–Functional Selectivity Relationship Studies on A-86929 Analogs and Small Aryl Fragments toward the Discovery of Biased Dopamine D1 Receptor Agonists. ACS Chemical Neuroscience, 2022, 13, 1818-1831.	3.5	2
32	A Role for Cortical Dopamine in the Paradoxical Calming Effects of Psychostimulants. FASEB Journal, 2022, 36, .	0.5	0
33	Role of Cortical Dopamine circuits in regulating Striatal Dopamine dynamics during Reversal Learning. FASEB Journal, 2022, 36, .	0.5	0