
Patrizia Dell'Era

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/805217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of the induced pluripotent stem cell line UNIBSi017-A from an individual with cardiospondylocarpofacial syndrome and the MAP3K7 c.737-7A>G variant. Stem Cell Research, 2022, , 102837.	0.7	0
2	Simultaneously characterization of tumoral angiogenesis and vasculogenesis in stem cell-derived teratomas. Experimental Cell Research, 2021, 400, 112490.	2.6	2
3	A detailed characterization of the hyperpolarization-activated "funny―current (If) in human-induced pluripotent stem cell (iPSC)–derived cardiomyocytes with pacemaker activity. Pflugers Archiv European Journal of Physiology, 2021, 473, 1009-1021.	2.8	18
4	Parkinson's disease patient-specific neuronal networks carrying the LRRK2 G2019S mutation unveil early functional alterations that predate neurodegeneration. Npj Parkinson's Disease, 2021, 7, 55.	5.3	11
5	EBF1 is expressed in pericytes and contributes to pericyte cell commitment. Histochemistry and Cell Biology, 2021, 156, 333-347.	1.7	18
6	Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovascular Research, 2020, 116, 1147-1160.	3.8	50
7	Arrangement of Live Human Cells through Acoustic Waves Generated by Piezoelectric Actuators for Tissue Engineering Applications. Applied Sciences (Switzerland), 2020, 10, 3477.	2.5	2
8	INK-JET PRINTED STRETCHABLE SENSORS FOR CELL MONITORING UNDER MECHANICAL STIMULI: A FEASIBILITY STUDY. Journal of Mechanics in Medicine and Biology, 2019, 19, 1950049.	0.7	3
9	Preparation and properties of high performance gelatin-based hydrogels with chitosan or hydroxyethyl cellulose for tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 183-192.	3.4	25
10	Generation and characterization of the human iPSC line IDISi001-A isolated from blood cells of a CADASIL patient carrying a NOTCH3 mutation. Stem Cell Research, 2018, 28, 16-20.	0.7	9
11	Carbon on poly(ε-caprolactone) (PCL) Ink-jet Printed Sensor for Monitoring Cell Cultures of Myoblasts. IFMBE Proceedings, 2018, , 783-786.	0.3	1
12	ELM: A New, Simple, and Economic Assay to Measure Motility of Lymphatic Endothelial Cells. Lymphatic Research and Biology, 2017, 15, 39-44.	1.1	0
13	Clinical potentials of human pluripotent stem cells. Cell Biology and Toxicology, 2017, 33, 351-360.	5.3	55
14	Generation of induced Pluripotent Stem Cells as disease modelling of NLSDM. Molecular Genetics and Metabolism, 2017, 121, 28-34.	1.1	4
15	Generation of induced pluripotent stem cells (iPSC) from an atrial fibrillation patient carrying a PITX2 p.M200V mutation. Stem Cell Research, 2017, 24, 8-11.	0.7	7
16	Microstructured scaffold for guided cellular orientation: Poly(ε-caprolactone) electrospinning on laser ablated titanium collector. CIRP Journal of Manufacturing Science and Technology, 2017, 19, 147-157.	4.5	14
17	Generation of induced pluripotent stem cells (iPSC) from an atrial fibrillation patient carrying a KCNA5 p.D322H mutation. Stem Cell Research, 2017, 24, 29-32.	0.7	3
18	Preliminary Study of Inkjet Printed Sensors for Monitoring Cell Cultures. Procedia Engineering, 2016, 168, 578-581.	1.2	10

PATRIZIA DELL'ERA

#	Article	IF	CITATIONS
19	Prediction of abdominal aortic aneurysm calcification by means of variation of high-sensitivity C-reactive protein. JRSM Cardiovascular Disease, 2016, 5, 204800401668217.	0.7	4
20	Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Developmental Dynamics, 2016, 245, 1145-1158.	1.8	42
21	Biomanufacturing of a Chitosan/Collagen Scaffold to Drive Adhesion and Alignment of Human Cardiomyocyte Derived from Stem Cells. Procedia CIRP, 2016, 49, 113-120.	1.9	21
22	Cardiac disease modeling using induced pluripotent stem cell-derived human cardiomyocytes. World Journal of Stem Cells, 2015, 7, 329.	2.8	35
23	Using iPS Cells toward the Understanding of Parkinson's Disease. Journal of Clinical Medicine, 2015, 4, 548-566.	2.4	47
24	Lower endothelial progenitor cell number, family history of cardiovascular disease and reduced HDL-cholesterol levels are associated with shorter leukocyte telomere length in healthy young adults. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 272-278.	2.6	37
25	Ascorbic acid rescues cardiomyocyte development in Fgfr1â^'/â^' murine embryonic stem cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 140-147.	4.1	11
26	Comparative Analysis of Mesenchymal Stromal Cells Biological Properties. ISRN Stem Cells, 2013, 2013, 1-9.	1.8	16
27	Induced pluripotent stem cell-based studies of Parkinson's disease: challenges and promises. CNS and Neurological Disorders - Drug Targets, 2013, 12, 1114-27.	1.4	9
28	Phage Displayed Peptides/Antibodies Recognizing Growth Factors and Their Tyrosine Kinase Receptors as Tools for Anti-Cancer Therapeutics. International Journal of Molecular Sciences, 2012, 13, 5254-5277.	4.1	7
29	Sphingosine-1-Phosphate Receptor-1 Controls Venous Endothelial Barrier Integrity in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e104-16.	2.4	29
30	Antiangiogenic Activity of a Neutralizing Human Single-Chain Antibody Fragment against Fibroblast Growth Factor Receptor 1. Molecular Cancer Therapeutics, 2010, 9, 3244-3253.	4.1	28
31	Fibroblast growth factor receptorâ€1 phosphorylation requirement for cardiomyocyte differentiation in murine embryonic stem cells. Journal of Cellular and Molecular Medicine, 2009, 13, 1489-1498.	3.6	11
32	Inflammatory cells andÂchemokines sustain FGF2-induced angiogenesis. European Cytokine Network, 2009, 20, 39-50.	2.0	114
33	Fibroblast Growth Factor-2 in Angiogenesis. , 2008, , 77-88.		2
34	FGF2-induced upregulation of DNA polymerase-δp12 subunit in endothelial cells. Oncogene, 2005, 24, 1117-1121.	5.9	13
35	Fibroblast Growth Factor Receptor-1 Expression Is Required for Hematopoietic but not Endothelial Cell Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 944-949.	2.4	35
36	Antiangiogenic Activity of Semisynthetic Biotechnological Heparins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 71-76.	2.4	35

PATRIZIA DELL'ERA

#	Article	IF	CITATIONS
37	Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews, 2005, 16, 159-178.	7.2	1,126
38	Fibroblast Growth Factor Receptor-1 Is Essential for In Vitro Cardiomyocyte Development. Circulation Research, 2003, 93, 414-420.	4.5	117
39	Osteopontin (Eta-1) and Fibroblast Growth Factor-2 Cross-Talk in Angiogenesis. Journal of Immunology, 2003, 171, 1085-1093.	0.8	123
40	Shedding of Membrane Vesicles Mediates Fibroblast Growth Factor-2 Release from Cells. Journal of Biological Chemistry, 2003, 278, 51911-51919.	3.4	99
41	Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4367-4372.	7.1	101
42	Fibroblast Growth Factors and Their Receptors in Hematopoiesis and Hematological Tumors. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 19-32.	1.8	52
43	Gene expression profile in fibroblast growth factor 2-transformed endothelial cells. Oncogene, 2002, 21, 2433-2440.	5.9	30
44	Biological activity of substrate-bound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene, 2002, 21, 3889-3897.	5.9	61
45	Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells. Oncogene, 2001, 20, 2655-2663.	5.9	53
46	Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): comparative analysis of Y373C, K650E and the novel G384D mutations. Oncogene, 2001, 20, 3553-3562.	5.9	98
47	Examining New Models for the Study of Autocrine and Paracrine Mechanisms of Angiogenesis Through FGF2-Transfected Endothelial and Tumour Cells. Advances in Experimental Medicine and Biology, 2000, 476, 7-34.	1.6	8
48	Different Tyrosine Autophosphorylation Requirements in Fibroblast Growth Factor Receptor-1 Mediate Urokinase-Type Plasminogen Activator Induction and Mitogenesis. Molecular Biology of the Cell, 1999, 10, 23-33.	2.1	27
49	Modulation of Fibroblast Growth Factor-2 Receptor Binding, Signaling, and Mitogenic Activity by Heparin-Mimicking Polysulfonated Compounds. Molecular Pharmacology, 1999, 56, 204-213.	2.3	95
50	Alterations of blood vessel development by endothelial cells overexpressing fibroblast growth factor-2. , 1999, 189, 590-599.		35
51	Alterations of blood vessel development by endothelial cells overexpressing fibroblast growth factorâ€Â2. Journal of Pathology, 1999, 189, 590-599.	4.5	3
52	Human Erythropoietin Induces a Pro-Angiogenic Phenotype in Cultured Endothelial Cells and Stimulates Neovascularization In Vivo. Blood, 1999, 93, 2627-2636.	1.4	16
53	Developmentally regulated expression and localization of fibroblast growth factor receptors in the human muscle. , 1998, 211, 362-373.		19
54	Autocrine Role of Basic Fibroblast Growth Factor (bFGF) in Angiogenesis and Angioproliferative Diseases. , 1998, , 99-112.		0

PATRIZIA DELL'ERA

#	Article	IF	CITATIONS
55	α _v β ₃ Integrin Mediates the Cell-adhesive Capacity and Biological Activity of Basic Fibroblast Growth Factor (FGF-2) in Cultured Endothelial Cells. Molecular Biology of the Cell, 1997, 8, 2449-2461.	2.1	140
56	Urokinase-Type Plasminogen Activator Overexpression Enhances the Invasive Capacity of Endothelial Cells. Microvascular Research, 1997, 53, 254-260.	2.5	17
57	Basic Fibroblast Growth Factor–Induced Angiogenic Phenotype in Mouse Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 454-464.	2.4	108
58	Nitric Oxide Promotes Proliferation and Plasminogen Activator Production by Coronary Venular Endothelium Through Endogenous bFGF. Circulation Research, 1997, 80, 845-852.	4.5	182
59	Expression of basic fibroblast growth factor and its receptors in human fetal microglia cells. International Journal of Developmental Neuroscience, 1995, 13, 29-39.	1.6	44
60	Distinct Role of 2-O-, N-, and 6-O-Sulfate Groups of Heparin in the Formation of the Ternary Complex with Basic Fibroblast Growth Factor and Soluble FGF Receptor-1. Biochemical and Biophysical Research Communications, 1994, 203, 450-458.	2.1	85
61	Differential expression of fibroblast growth factor receptors by human neurones, astrocytes, and microglia. NeuroReport, 1994, 6, 197-200.	1.2	29
62	Characterization of the murine BEK fibroblast growth factor (FGF) receptor: activation by three members of the FGF family and requirement for heparin Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 3305-3309.	7.1	143
63	Nuclear localization of endogenous basic fibroblast growth factor in cultured endothelial cells. Experimental Cell Research, 1991, 192, 505-510.	2.6	62
64	Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells Molecular Biology of the Cell, 1991, 2, 719-726.	6.5	64
65	Basic fibroblast growth factor in neuronal cultures of human fetal brain. Journal of Neuroscience Research, 1990, 27, 78-83.	2.9	26
66	Chemical structure and genotoxic activity of the hepatocarcinogenic beta-blocker DL-ZAMI 1305. Carcinogenesis, 1990, 11, 261-265.	2.8	3
67	Characterization of a Mr 25,000 basic fibroblast growth factor form in adult, regenerating, and fetal rat liver. Biochemical and Biophysical Research Communications, 1989, 164, 1182-1189.	2.1	41
68	Gene expression profile in fibroblast growth factor 2-transformed endothelial cells. , 0, .		1