Yifei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051605/publications.pdf

Version: 2024-02-01

28 papers	738 citations	687363 13 h-index	27 g-index
28	28	28	854 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Forceâ€Induced Molecular Isomerization for the Construction of Multicolor Luminescent Segmented Molecular Crystals. Advanced Optical Materials, 2022, 10, .	7.3	4
2	Ultrabright Pdots with a Large Absorbance Cross Section and High Quantum Yield. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13631-13637.	8.0	7
3	Sequential Ensemble-Decision Aliquot Ranking Isolation and Fluorescence <i>In Situ</i> Hybridization Identification of Rare Cells from Blood by Using Concentrated Peripheral Blood Mononuclear Cells. Analytical Chemistry, 2021, 93, 3196-3201.	6.5	7
4	Sizing Extracellular Vesicles Using Membrane Dyes and a Single Molecule-Sensitive Flow Analyzer. Analytical Chemistry, 2021, 93, 5897-5905.	6.5	13
5	Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics, 2021, 10, 358.	3.7	18
6	Multimode Time-Resolved Superresolution Microscopy Revealing Chain Packing and Anisotropic Single Carrier Transport in Conjugated Polymer Nanowires. Nano Letters, 2021, 21, 4255-4261.	9.1	13
7	β-arrestin–dependent PI(4,5)P ₂ synthesis boosts GPCR endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
8	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 12114-12119.	2.0	8
9	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 12007-12012.	13.8	37
10	Highâ€Throughput Counting and Superresolution Mapping of Tetraspanins on Exosomes Using a Singleâ€Molecule Sensitive Flow Technique and Transistorâ€like Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 13582-13587.	2.0	5
11	Highâ€Throughput Counting and Superresolution Mapping of Tetraspanins on Exosomes Using a Singleâ€Molecule Sensitive Flow Technique and Transistorâ€ike Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 13470-13475.	13.8	27
12	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€Specific Enzyme. Angewandte Chemie, 2021, 133, 19480-19485.	2.0	8
13	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€6pecific Enzyme. Angewandte Chemie - International Edition, 2021, 60, 19331-19336.	13.8	19
14	An integrated liquid crystal sensing device assisted by the surfactant-embedded smart hydrogel. Biosensors and Bioelectronics, 2021, 187, 113313.	10.1	27
15	Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration. Analytical Chemistry, 2021, 93, 2359-2366.	6.5	11
16	A pendant droplet-based sensor for the detection of acetylcholinesterase and its inhibitors. Chemical Communications, 2021, 57, 8909-8912.	4.1	5
17	Dualâ€Mode Superresolution Imaging Using Charge Transfer Dynamics in Semiconducting Polymer Dots. Angewandte Chemie, 2020, 132, 16307-16314.	2.0	4
18	Dualâ€Mode Superresolution Imaging Using Charge Transfer Dynamics in Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2020, 59, 16173-16180.	13.8	27

#	Article	IF	CITATION
19	Simultaneous Detection of Multiple Tumor Markers in Blood by Functional Liquid Crystal Sensors Assisted with Target-Induced Dissociation of Aptamer. Analytical Chemistry, 2020, 92, 3867-3873.	6.5	77
20	Detection of Biomarkers in Blood Using Liquid Crystals Assisted with Aptamer-Target Recognition Triggered in Situ Rolling Circle Amplification on Magnetic Beads. Analytical Chemistry, 2019, 91, 11653-11660.	6.5	41
21	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie, 2019, 131, 7082-7086.	2.0	4
22	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie - International Edition, 2019, 58, 7008-7012.	13.8	57
23	Single-Molecule Flow Platform for the Quantification of Biomolecules Attached to Single Nanoparticles. Analytical Chemistry, 2018, 90, 6089-6095.	6.5	10
24	Nanoscopy of Single Charge Carrier Jumps in a Conjugated Polymer Nanoparticle. Journal of Physical Chemistry C, 2018, 122, 1376-1383.	3.1	17
25	Superresolution mapping of energy landscape for single charge carriers in plastic semiconductors. Nature Communications, 2018, 9, 4314.	12.8	19
26	Improved Superresolution Imaging Using Telegraph Noise in Organic Semiconductor Nanoparticles. Nano Letters, 2017, 17, 3896-3901.	9.1	33
27	Effect of Swelling on Multiple Energy Transfer in Conjugated Polymer Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 7549-7557.	3.1	12
28	Light-Harvesting and Amplified Energy Transfer in Conjugated Polymer Nanoparticles. Chemical Reviews, 2017, 117, 838-859.	47.7	217