Claudio E Perez-Leighton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain site-specific regulation of hedonic intake by orexin and DYN peptides: role of the PVN and obesity. Nutritional Neuroscience, 2022, 25, 1105-1114.	3.1	12
2	Integrating the effects of sucrose intake on the brain and white adipose tissue: Could autophagy be a possible link?. Obesity, 2022, 30, 1143-1155.	3.0	4
3	Preoperative liking and wanting for sweet beverages as predictors of body weight loss after Roux-en-Y gastric bypass and sleeve gastrectomy. International Journal of Obesity, 2020, 44, 1350-1359.	3.4	8
4	Rat Models of Obesity, Metabolic Syndrome, and Diabetes. , 2020, , 987-1002.		1
5	Calcium-Sensing Receptor in Adipose Tissue: Possible Association with Obesity-Related Elevated Autophagy. International Journal of Molecular Sciences, 2020, 21, 7617.	4.1	10
6	Palmitic acid reduces the autophagic flux in hypothalamic neurons by impairing autophagosome-lysosome fusion and endolysosomal dynamics. Molecular and Cellular Oncology, 2020, 7, 1789418.	0.7	20
7	Orexin Drives Energy Expenditure. , 2019, , 69-84.		Ο
8	Noise-induced sleep disruption increases weight gain and decreases energy metabolism in female rats. International Journal of Obesity, 2019, 43, 1759-1768.	3.4	16
9	Effects on Hedonic Feeding, Energy Expenditure and Balance of the Non-opioid Peptide DYN-A2-17. Neuroscience, 2018, 371, 337-345.	2.3	5
10	Updates on the neurobiology of food reward and their relation to the obesogenic environment. Current Opinion in Endocrinology, Diabetes and Obesity, 2018, 25, 292-297.	2.3	15
11	Orexin signaling in rostral lateral hypothalamus and nucleus accumbens shell in the control of spontaneous physical activity in high- and low-activity rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R338-R346.	1.8	18
12	The Food Environment, Preference, and Experience Modulate the Effects of Exendinâ€4 on Food Intake and Reward. Obesity, 2017, 25, 1844-1851.	3.0	17
13	Role of Sex and the Environment in Moderating Weight Gain Due to Inadequate Sleep. Current Obesity Reports, 2017, 6, 397-404.	8.4	8
14	Spontaneous Physical Activity Defends Against Obesity. Current Obesity Reports, 2017, 6, 362-370.	8.4	31
15	Role of the non-opioid dynorphin peptide des-Tyr-dynorphin (DYN-A2â~'17) in food intake and physical activity, and its interaction with orexin-A Peptides, 2016, 76, 14-18.	2.4	11
16	Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area. Sleep, 2015, 38, 1361-1370.	1.1	44
17	Behavioral characterization of a model of differential susceptibility to obesity induced by standard and personalized cafeteria diet feeding. Physiology and Behavior, 2015, 152, 315-322.	2.1	14
18	Methodological considerations for measuring spontaneous physical activity in rodents. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R714-R721.	1.8	32

#	Article	IF	CITATIONS
19	Orexin modulation of adipose tissue. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 440-445.	3.8	25
20	Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats. Physiology and Behavior, 2014, 135, 104-111.	2.1	14
21	High and low activity rats: Elevated intrinsic physical activity drives resistance to dietâ€induced obesity in nonâ€bred rats. Obesity, 2013, 21, 353-360.	3.0	34
22	Role of the locus coeruleus in enhanced orexin A-induced spontaneous physical activity in obesity-resistant rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1337-R1345.	1.8	34
23	Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E865-E874.	3.5	51
24	Brain orexin promotes obesity resistance. Annals of the New York Academy of Sciences, 2012, 1264, 72-86.	3.8	72
25	Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. European Journal of Neuroscience, 2011, 33, 856-867.	2.6	55