Yuriy Rusakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051128/publications.pdf Version: 2024-02-01

YUDIN BUSAKON

#	Article	IF	CITATIONS
1	Fluorine spin–spin coupling constants of pentafluorobenzene revisited at the ab initio correlated levels. Magnetic Resonance in Chemistry, 2022, , .	1.9	3
2	New pecS- <i>n</i> (<i>n</i> = 1, 2) basis sets for quantum chemical calculations of the NMR chemical shifts of H, C, N, and O nuclei. Journal of Chemical Physics, 2022, 156, .	3.0	6
3	Computational ¹⁹⁹ Hg NMR. Magnetic Resonance in Chemistry, 2022, 60, 929-953.	1.9	9
4	Quantum chemical calculations of ⁷⁷ Se and ¹²⁵ Te nuclear magnetic resonance spectral parameters and their structural applications. Magnetic Resonance in Chemistry, 2021, 59, 359-407.	1.9	21
5	An efficient method for generating property-energy consistent basis sets. New pecJ- <i>n</i> (<i>n</i> =) Tj ETQq1 involving ¹ H, ¹³ C, ¹⁵ N, and ¹⁹ F nuclei. Physical Chemistry Chemical Physics. 2021. 23. 14925-14939.	1 0.7843 2.8	314 rgBT /O 11
6	Efficient <i>J</i> â€oriented tin basis sets for the correlated calculations of indirect nuclear spin–spin coupling constants. Magnetic Resonance in Chemistry, 2021, 59, 713-722.	1.9	8
7	What Most Affects the Accuracy of ¹²⁵ Te NMR Chemical Shift Calculations. Journal of Physical Chemistry A, 2020, 124, 6714-6725.	2.5	11
8	A New Basis Set for the Calculation of ¹³ C NMR Chemical Shifts within a Non-empirical Correlated Framework. Journal of Physical Chemistry A, 2020, 124, 7322-7330.	2.5	4
9	Correlated <i>ab initio</i> calculations of oneâ€bond ³¹ P ⁷⁷ Se and ³¹ P ¹²⁵ Te spin–spin coupling constants in a series of P4Se and P4Te system accounting for relativistic effects (part 2). Magnetic Resonance in Chemistry, 2020, 58, 929-940.	s1.9	9
10	Hierarchical Basis Sets for the Calculation of Nuclear Magnetic Resonance Spin–Spin Coupling Constants Involving Either Selenium or Tellurium Nuclei. Journal of Physical Chemistry A, 2019, 123, 6564-6571.	2.5	18
11	Stereochemical Dependences of ³¹ P– ¹³ C Spin–Spin Coupling Constants of Heterocyclic Phosphines. Journal of Physical Chemistry A, 2019, 123, 6298-6303.	2.5	8
12	Geometries and NMR properties of cisplatin and transplatin revisited at the four-component relativistic level. Mendeleev Communications, 2019, 29, 315-317.	1.6	9
13	On the heavy atom on light atom relativistic effect in the NMR shielding constants of phosphine tellurides. Magnetic Resonance in Chemistry, 2019, 57, 1071-1083.	1.9	8
14	Longâ€range relativistic heavy atom effect on ¹ H NMR chemical shifts of selenium―and telluriumâ€containing compounds. International Journal of Quantum Chemistry, 2019, 119, e25809.	2.0	17
15	Stereoselective synthesis of E-2-halovinyl tellanes, ditellanes and selenides based on tellurium tetrahalides, selenium dihalides and internal alkynes. Journal of Organometallic Chemistry, 2018, 867, 300-305.	1.8	16
16	Relativistic heavy atom effect on the <scp>³¹P NMR</scp> parameters of phosphine chalcogenides. Part 1. Chemical shifts. Magnetic Resonance in Chemistry, 2018, 56, 1061-1073.	1.9	16
17	Calculation of ¹⁵ N and ³¹ P NMR Chemical Shifts of Azoles, Phospholes, and Phosphazoles: A Gateway to Higher Accuracy at Less Computational Cost. Journal of Physical Chemistry A, 2018, 122, 6746-6759.	2.5	10
18	Relativistic heavy atom effect on ¹³ <scp>C NMR</scp> chemical shifts initiated by adjacent multiple chalcogens. Magnetic Resonance in Chemistry, 2018, 56, 716-726.	1.9	15

Yuriy Rusakov

#	Article	IF	CITATIONS
19	Calculation of125Te NMR Chemical Shifts at the Full Four-Component Relativistic Level with Taking into Account Solvent and Vibrational Corrections: A Gateway to Better Agreement with Experiment. Journal of Physical Chemistry A, 2017, 121, 4793-4803.	2.5	19
20	On the longâ€range relativistic effects in the ¹⁵ <scp>N NMR</scp> chemical shifts of halogenated azines. Magnetic Resonance in Chemistry, 2017, 55, 990-995.	1.9	7
21	On the significant relativistic heavy atom effect on ¹³ C NMR chemical shifts of β- and γ-carbons in seleno- and telluroketones. Molecular Physics, 2017, 115, 3117-3127.	1.7	17
22	Quantum-chemical calculations of NMR chemical shifts of organic molecules: XV. Relativistic calculations of 29Si NMR chemical shifts of silanes. Russian Journal of Organic Chemistry, 2017, 53, 643-651.	0.8	6
23	Relativistic effects of chlorine in 15N NMR chemical shifts of chlorine-containing amines. Russian Journal of Organic Chemistry, 2017, 53, 1738-1739.	0.8	2
24	Dipropadienyl telluride. Russian Chemical Bulletin, 2017, 66, 2343-2344.	1.5	1
25	Normal halogen dependence of ¹³ C NMR chemical shifts of halogenomethanes revisited at the fourâ€component relativistic level. Magnetic Resonance in Chemistry, 2016, 54, 787-792.	1.9	18
26	Theoretical grounds of relativistic methods for calculation of spin–spin coupling constants in nuclear magnetic resonance spectra. Russian Chemical Reviews, 2016, 85, 356-426.	6.5	63
27	New relativistic computational schemes for 13C NMR chemical shifts. Russian Journal of Organic Chemistry, 2016, 52, 1203-1204.	0.8	2
28	Indirect relativistic bridge and substituent effects from the †heavy' environment on the oneâ€bond and twoâ€bond ¹³ C ¹ H spin–spin coupling constants. Magnetic Resonance in Chemistry, 2016, 54, 39-45.	1.9	10
29	On the HALA effect in the NMR carbon shielding constants of the compounds containing heavy pâ€elements. International Journal of Quantum Chemistry, 2016, 116, 1404-1412.	2.0	39
30	First example of the correlated calculation of the oneâ€bond tellurium–carbon spin–spin coupling constants: Relativistic effects, vibrational corrections, and solvent effects. Journal of Computational Chemistry, 2016, 37, 1367-1372.	3.3	18
31	Reaction of tellurium tetrachloride with hex-3-yne. Russian Chemical Bulletin, 2015, 64, 2747-2748.	1.5	6
32	Relativistic effect of iodine in 13C NMR chemical shifts of iodomethanes from quantum chemical calculations within the framework of the full four-component relativistic Dirac—Coulomb scheme. Russian Chemical Bulletin, 2015, 64, 2756-2762.	1.5	14
33	MP2 calculation of ⁷⁷ Se NMR chemical shifts taking into account relativistic corrections. Magnetic Resonance in Chemistry, 2015, 53, 485-492.	1.9	19
34	Relativistic Environmental Effects in ²⁹ Si NMR Chemical Shifts of Halosilanes: Light Nucleus, Heavy Environment. Journal of Physical Chemistry A, 2015, 119, 5778-5789.	2.5	11
35	Fourâ€component relativistic <scp>DFT</scp> calculations of ⁷⁷ Se <scp>NMR</scp> chemical shifts: A gateway to a reliable computational scheme for the mediumâ€sized organoselenium molecules. Journal of Computational Chemistry, 2015, 36, 1756-1762.	3.3	13
36	Calculations of 29Si NMR shifts of organylsilanes by DFT taking into account solvent effects and relativistic corrections. Russian Chemical Bulletin, 2015, 64, 551-557.	1.5	6

#	Article	IF	CITATIONS
37	Stereochemical behavior of geminal and vicinal ⁷⁷ Se– ¹³ C spin–spin coupling constants studied at the SOPPA(CC2) level taking into account relativistic corrections. Magnetic Resonance in Chemistry, 2015, 53, 93-98.	1.9	10
38	Quantum-chemical calculations of NMR chemical shifts of organic molecules: XIV. Solvation effects in calculations of chemical shifts in 13C NMR spectra of chlorine-containing compounds. Russian Journal of Organic Chemistry, 2014, 50, 1082-1086.	0.8	4
39	Towards the versatile DFT and MP2 computational schemes for ³¹ P NMR chemical shifts taking into account relativistic corrections. Magnetic Resonance in Chemistry, 2014, 52, 699-710.	1.9	38
40	Nonempirical calculations of the oneâ€bond ²⁹ Si– ¹³ C spin–spin coupling constants taking into account relativistic and solvent corrections. Magnetic Resonance in Chemistry, 2014, 52, 413-421.	1.9	10
41	An Effective Method for the Synthesis of 3,5-bis(halomethyl)-1,4-Oxaselenanes and their Derivatives. Chemistry of Heterocyclic Compounds, 2014, 49, 1821-1826.	1.2	9
42	Full fourâ€component relativistic calculations of the oneâ€bond ⁷⁷ Se– ¹³ C spinâ€spin coupling constants in the series of selenium heterocycles and their parent openâ€chain selenides. Magnetic Resonance in Chemistry, 2014, 52, 214-221.	1.9	15
43	Quantum-chemical calculations of NMR chemical shifts of organic molecules: XII. Calculation of the 13C NMR chemical shifts of fluoromethanes at the DFT level. Russian Journal of Organic Chemistry, 2014, 50, 160-164.	0.8	8
44	Relativistic effects in the oneâ€bond spin–spin coupling constants involving selenium. Magnetic Resonance in Chemistry, 2014, 52, 500-510.	1.9	18
45	First example of a high-level correlated calculation of the indirect spin–spin coupling constants involving tellurium: tellurophene and divinyl telluride. Physical Chemistry Chemical Physics, 2013, 15, 13101-13107.	2.8	30
46	Modern quantum chemical methods for calculating spin–spin coupling constants: theoretical basis and structural applications in chemistry. Russian Chemical Reviews, 2013, 82, 99-130.	6.5	107
47	Oneâ€bond ²⁹ Siâ€ ¹ H spinâ€spin coupling constants in the series of halosilanes: benchmark SOPPA and DFT calculations, relativistic effects, and vibrational corrections. Magnetic Resonance in Chemistry, 2013, 51, 557-561.	1.9	15
48	Reaction of 2-pyridylselenenyl bromide with divinyl selenide. Chemistry of Heterocyclic Compounds, 2012, 48, 1129-1131.	1.2	21
49	Openâ€chain unsaturated selanyl sulfides: stereochemical structure and stereochemical behavior of their ⁷⁷ Se– ¹ H spin–spin coupling constants. Magnetic Resonance in Chemistry, 2012, 50, 653-658.	1.9	20
50	Structural trends of ²⁹ Si– ¹ H spin–spin coupling constants across double bond. Magnetic Resonance in Chemistry, 2012, 50, 665-671.	1.9	15
51	Algebraic-diagrammatic construction polarization propagator approach to indirect nuclear spin–spin coupling constants. Journal of Chemical Physics, 2012, 137, 044119.	3.0	15
52	Stereochemical behavior of ⁷⁷ Seâ€ ¹ H spinâ€spin coupling constants in pyrazolylâ€1,3â€diselenanes and 1,2â€diselenolane. Magnetic Resonance in Chemistry, 2012, 50, 169-173.	1.9	24
53	Benchmark calculations of ²⁹ Si– ¹ H spin–spin coupling constants across double bond. Magnetic Resonance in Chemistry, 2012, 50, 278-283.	1.9	18
54	Resonance assignments of diastereotopic CH ₂ protons in the anomeric side chain of selenoglycosides by means of ² <i>J</i> (Se,H) spinâ€spin coupling constants. Magnetic Resonance in Chemistry, 2012, 50, 488-495.	1.9	22

Yuriy Rusakov

#	Article	IF	CITATIONS
55	Stereochemical behavior of ² <i>J</i> (Se,H) and ³ <i>J</i> (i>(Se,H) spinâ€spin coupling constants across sp ³ carbons: a theoretical scrutiny. Magnetic Resonance in Chemistry, 2012, 50, 557-562.	1.9	15
56	Regioselective dehydrobromination reaction of 5-bromo-2-bromomethyl-1,3-thiaselenolane 1,1-dioxide. Russian Chemical Bulletin, 2011, 60, 196-197.	1.5	3
57	Experimental and computational studies of ^{<i>n</i>} <i>J</i> (sup>77Se, ¹ H) selenium–proton couplings in selenoglycosides. Magnetic Resonance in Chemistry, 2011, 49, 190-194.	1.9	32
58	Conformational analysis and diastereotopic assignments in the series of seleniumâ€containing heterocycles by means of ⁷⁷ Seâ€ ¹ H spinâ€spin coupling constants: a combined theoretical and experimental study. Magnetic Resonance in Chemistry, 2011, 49, 389-398.	1.9	42
59	Stereochemical study of the sterically crowded phenylselanylalkenes by means of ⁷⁷ Se ¹ H spin–spin coupling constants. Magnetic Resonance in Chemistry, 2011, 49, 570-574.	1.9	13
60	Benchmarking SOPPA(CC2) for the calculation of indirect nuclear spin–spin coupling constants: Carbocycles. Chemical Physics, 2011, 381, 35-43.	1.9	31
61	Structural trends of ⁷⁷ Se ¹ H spin–spin coupling constants and conformational behavior of 2â€substituted selenophenes. Magnetic Resonance in Chemistry, 2010, 48, 44-52.	1.9	77
62	Trivinylphosphine and trivinylphosphine chalcogenides: stereochemical trends of 31P1H spin-spin coupling constants. Magnetic Resonance in Chemistry, 2010, 48, S48-S55.	1.9	19
63	10.1007/s11178-008-2009-4. , 2010, 44, 237.		0
64	Conformational analysis and stereochemical dependences of ³¹ P– ¹ H spin–spin coupling constants of bis(2â€phenethyl)vinylphosphine and related phosphine chalcogenides. Magnetic Resonance in Chemistry, 2009, 47, 288-299.	1.9	21
65	Conformational analysis of N-vinyl-2-phenylpyrrole. Chemistry of Heterocyclic Compounds, 2009, 45, 28-34.	1.2	1
66	Theoretical conformational analysis of unsaturated phospines and phosphinechalcogenides. Russian Journal of Organic Chemistry, 2009, 45, 667-673.	0.8	5
67	Conformational Analysis of 2-Formylselenophene by Means of 13C - 1H, 13C - 13C, and 77Se - 1H Spin - Spin Coupling Constants. Australian Journal of Chemistry, 2009, 62, 734.	0.9	20
68	Synthesis and conformational analysis of furfuryl vinyl ethers. Russian Chemical Bulletin, 2008, 57, 2132-2138.	1.5	3
69	Divinyl selenide: conformational study and stereochemical behavior of its ⁷⁷ Se ¹ H spin–spin coupling constants. Magnetic Resonance in Chemistry, 2008, 46, 979-985.	1.9	43
70	Incomparably easy migration of functionalized enol substituent in pyrrole ring. Russian Journal of Organic Chemistry, 2008, 44, 237-246.	0.8	3
71	13C-13C spin-spin coupling constants in structural studies: XLIII. Stereochemical study on functionalized 3-iminopyrrolizines. Russian Journal of Organic Chemistry, 2008, 44, 1338-1344.	0.8	7
72	Theoretical conformational analysis of divinyl selenide. Russian Journal of Organic Chemistry, 2008, 44, 1418-1421.	0.8	3

YURIY RUSAKOV

#	Article	IF	CITATIONS
73	4-Dimethylaminoacetophenone O-vinyloxime: Synthesis and steric structure. Russian Journal of Organic Chemistry, 2008, 44, 1497-1503.	0.8	2
74	Influence of the Introduction of Short Alkyl Chains in Poly(2-(2-Thienyl)-1 <i>H</i> -pyrrole) on Its Electrochromic Behavior. Macromolecules, 2008, 41, 6886-6894.	4.8	42
75	Stereochemical Study of 2-Substituted N-Vinylpyrroles. Australian Journal of Chemistry, 2007, 60, 583.	0.9	16
76	Facile coupling of 2â€(1â€ethylthioethenyl)pyrroles with amines: A route to 2â€(1â€aminoethenyl)pyrroles and 1â€aminoâ€3â€iminopyrrolizines. Journal of Heterocyclic Chemistry, 2007, 44, 505-513.	2.6	11
77	Conformational study of 2-arylazo-1-vinylpyrroles. Magnetic Resonance in Chemistry, 2007, 45, 142-151.	1.9	18
78	Fluorescence quenching and laser photolysis of dipyrrolylbenzenes in the presence of chloromethanes. Russian Journal of General Chemistry, 2007, 77, 1386-1394.	0.8	9
79	13C-13C spin-spin coupling constants in structural studies: XL. Conformational analysis of N-vinylpyrroles. Russian Journal of Organic Chemistry, 2007, 43, 880-887.	0.8	9
80	Easy Î \pm - to Î ² -migration of an enol moiety on a pyrrole ring. Tetrahedron Letters, 2006, 47, 3645-3648.	1.4	11
81	Nonempirical calculations of NMR indirect spin–spin coupling constants. Part 15: pyrrolylpyridines. Magnetic Resonance in Chemistry, 2006, 44, 692-697	1.9	18
82	Two-components ion flow in a low voltage vacuum spark. , 2004, , .		0