Filipe E Antunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8051112/publications.pdf

Version: 2024-02-01

201674 243625 2,165 65 27 44 citations h-index g-index papers 67 67 67 2740 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chitosan Films in Food Applications. Tuning Film Properties by Changing Acidic Dissolution Conditions. Polymers, 2021, 13, 1.	4.5	210
2	Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. Journal of Colloid and Interface Science, 2008, 327, 333-340.	9.4	109
3	A brief overview on lignin dissolution. Journal of Molecular Liquids, 2018, 265, 578-584.	4.9	108
4	Polymer–vesicle association. Advances in Colloid and Interface Science, 2009, 147-148, 18-35.	14.7	106
5	Cellulose-based edible films for probiotic entrapment. Food Hydrocolloids, 2019, 88, 68-74.	10.7	90
6	Gels of Pluronic F127 and nonionic surfactants from rheological characterization to controlled drug permeation. Colloids and Surfaces B: Biointerfaces, 2011, 87, 42-48.	5.0	88
7	Network Formation of Catanionic Vesicles and Oppositely Charged Polyelectrolytes. Effect of Polymer Charge Density and Hydrophobic Modification. Langmuir, 2004, 20, 4647-4656.	3.5	80
8	Impact of organic and inorganic nanomaterials in the soil microbial community structure. Science of the Total Environment, 2012, 424, 344-350.	8.0	80
9	Polyelectrolyte-surfactant association—from fundamentals to applications. Colloid Journal, 2014, 76, 585-594.	1.3	65
10	Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium. Ecotoxicology, 2012, 21, 637-648.	2.4	64
11	Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose, 2016, 23, 247-258.	4.9	64
12	New deep eutectic solvent assisted extraction of highly pure lignin from maritime pine sawdust (Pinus) Tj ETQq0	0 <u>9 rg</u> BT /	Overlock 10 1
13	On the role of hydrophobic interactions in cellulose dissolution and regeneration: Colloidal aggregates and molecular solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 257-263.	4.7	54
14	Dissolution of kraft lignin in alkaline solutions. International Journal of Biological Macromolecules, 2020, 148, 688-695.	7. 5	52
15	Adjusting the low critical solution temperature of poly(N-isopropyl acrylamide) solutions by salts, ionic surfactants and solvents: A rheological study. Journal of Molecular Liquids, 2015, 210, 113-118.	4.9	46
16	Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Advances in Colloid and Interface Science, 2017, 249, 163-180.	14.7	44
17	Dissolution state of cellulose in aqueous systems. 2. Acidic solvents. Carbohydrate Polymers, 2016, 151, 707-715.	10.2	43
18	New insights on the interaction between hydroxypropylmethyl cellulose and sodium dodecyl sulfate. Carbohydrate Polymers, 2011, 86, 35-44.	10.2	41

#	Article	IF	CITATIONS
19	Studying orthogonal self-assembled systems: phase behaviour and rheology of gelled microemulsions. Soft Matter, 2013, 9, 3661.	2.7	40
20	Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: The role of ageing. Journal of Hazardous Materials, 2011, 194, 345-354.	12.4	36
21	Mechanisms behind the Faceting of Catanionic Vesicles by Polycations:Â Chain Crystallization and Segregation. Journal of Physical Chemistry B, 2007, 111, 116-123.	2.6	35
22	Probing cellulose amphiphilicity. Nordic Pulp and Paper Research Journal, 2015, 30, 58-66.	0.7	35
23	A rheological investigation of the association between a non-ionic microemulsion and hydrophobically modified PEG. Influence of polymer architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215, 87-100.	4.7	34
24	The role of cyclodextrin-tetrabutylammonium complexation on the cellulose dissolution. Carbohydrate Polymers, 2016, 140, 136-143.	10.2	30
25	Efficient dispersion of TiO2 using tailor made poly(acrylic acid) â^' based block copolymers, and its incorporation in water based paint formulation. Progress in Organic Coatings, 2017, 104, 34-42.	3.9	29
26	New Insights on the Role of Urea on the Dissolution and Thermally-Induced Gelation of Cellulose in Aqueous Alkali. Gels, 2018, 4, 87.	4.5	29
27	Structural Change of Bitumen in the Recycling Process by Using Rheology and NMR. Industrial & Engineering Chemistry Research, 2012, 51, 16346-16353.	3.7	28
28	Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. Journal of Molecular Liquids, 2015, 210, 106-112.	4.9	28
29	Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi. Science of the Total Environment, 2013, 458-460, 290-297.	8.0	26
30	Shear rheology and phase behaviour of sodium oleate/water mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 95-104.	4.7	25
31	Design of a dual nanostructured lipid carrier formulation based on physicochemical, rheological, and mechanical properties. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	24
32	Levulinic acid: A novel sustainable solvent for lignin dissolution. International Journal of Biological Macromolecules, 2020, 164, 3454-3461.	7.5	22
33	Rheology of polyacrylate systems depends strongly on architecture. Colloid and Polymer Science, 2015, 293, 3285-3293.	2.1	18
34	Mixed Systems of Hydrophobically Modified Polyelectrolytes:  Controlling Rheology by Charge and Hydrophobe Stoichiometry and Interaction Strength. Langmuir, 2005, 21, 10188-10196.	3.5	17
35	Gels of Catanionic Vesicles and Hydrophobically Modified Poly(ethylene glycol). Journal of Dispersion Science and Technology, 2006, 27, 83-90.	2.4	17
36	Amphiphilic Molecules in Drug Delivery Systems. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 35-85.	0.6	17

#	Article	IF	CITATIONS
37	On the rheology of mixed systems of hydrophobically modified polyacrylate microgels and surfactants: Role of the surfactant architecture. Journal of Colloid and Interface Science, 2018, 513, 489-496.	9.4	17
38	Mini-review: Synthetic methods for the production of cationic sugar-based surfactants. Journal of Molecular Liquids, 2021, 342, 117389.	4.9	17
39	Some novel aspects of DNA physical and chemical gels. Arkivoc, 2006, 2006, 161-172.	0.5	17
40	Stabilization of unilamellar catanionic vesicles induced by \hat{i}^2 -cyclodextrins: A strategy for a tunable drug delivery depot. International Journal of Pharmaceutics, 2018, 548, 474-479.	5.2	16
41	Role of surfactant headgroups on the toxicity of SLEnS-LAS mixed micelles: A case study using microtox test. Science of the Total Environment, 2018, 643, 1366-1372.	8.0	16
42	Effect of ethyleneoxide groups of anionic surfactants on lipase activity. Biotechnology Progress, 2016, 32, 1276-1282.	2.6	15
43	Thermoâ€responsive hydrogels from celluloseâ€based polyelectrolytes and catanionic vesicles for biomedical application. Journal of Biomedical Materials Research - Part A, 2016, 104, 1668-1679.	4.0	15
44	Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. International Journal of Biological Macromolecules, 2017, 102, 796-804.	7.5	15
45	Sodium Triflate Decreases Interaggregate Repulsion and Induces Phase Separation in Cationic Micelles. Langmuir, 2015, 31, 2609-2614.	3.5	14
46	Controlling the swelling and rheological properties of hydrophobically modified polyacrylic acid nanoparticles: Role of pH, anionic surfactant and electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 233-239.	4.7	13
47	Hydrophobic modifications of hydroxyethyl cellulose polymers: Their influence on the acute toxicity to aquatic biota. Journal of Hazardous Materials, 2021, 409, 124966.	12.4	12
48	Oxidative stress and genotoxicity of an organic and an inorganic nanomaterial to Eisenia andrei: SDS/DDAB nano-vesicles and titanium silicon oxide. Ecotoxicology and Environmental Safety, 2017, 140, 198-205.	6.0	11
49	Antiviral and antibacterial activity of hand sanitizer and surface disinfectant formulations. International Journal of Pharmaceutics, 2021, 609, 121139.	5.2	9
50	lonization by pH and Anionic Surfactant Binding Gives the Same Thickening Effects of Crosslinked Polyacrylic Acid Derivatives. Journal of Dispersion Science and Technology, 2012, 33, 1368-1372.	2.4	8
51	Morphological, textural and physico-chemical characterization of processed meat products during their shelf life. Food Structure, 2020, 26, 100164.	4.5	8
52	Dancing with oils $\hat{a} \in \text{``the interaction of lipases with different oil/water interfaces. Soft Matter, 2021, 17, 7086-7098.}$	2.7	8
53	Enhancing Lignin Dissolution and Extraction: The Effect of Surfactants. Polymers, 2021, 13, 714.	4.5	8
54	On the Development of Phenol-Formaldehyde Resins Using a New Type of Lignin Extracted from Pine Wood with a Levulinic-Acid Based Solvent. Molecules, 2022, 27, 2825.	3.8	7

#	Article	IF	CITATIONS
55	Ecotoxicity of cationic cellulose polymers to aquatic biota: The influence of charge density. Science of the Total Environment, 2022, 806, 150560.	8.0	6
56	Gelation of charged bio-nanocompartments induced by associative and non-associative polysaccharides. Colloids and Surfaces B: Biointerfaces, 2008, 66, 134-140.	5.0	5
57	Effect of Protein Flexibility from Coarse-Grained Elastic Network Parameterizations on the Calculation of Free Energy Profiles of Ligand Binding. Journal of Chemical Theory and Computation, 2020, 16, 4734-4743.	5.3	5
58	Novel ranking framework for retrospective simultaneous assessment of fire and mechanical performances of natural fiberâ€reinforced polymeric composites: Literature update from the previous decade. Journal of Vinyl and Additive Technology, 0, , .	3.4	5
59	Microstructure of Thermoplastic Composites Reinforced with Wool and Wood. Applied Mechanics and Materials, 0, 890, 98-112.	0.2	4
60	Development of sugar based biodegradable nanoencapsulators: Understanding the role of the alcohol injection method on the preparation of aqueous dispersions of sorbitan ester vesicles. Journal of Molecular Liquids, 2019, 277, 481-489.	4.9	4
61	Corncob Cellulose Scaffolds: A New Sustainable Temporary Implant for Cartilage Replacement. Journal of Functional Biomaterials, 2022, 13, 63.	4.4	4
62	How does a non-ionic hydrophobically modified telechelic polymer interact with a non-ionic vesicle? Rheological aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319, 173-179.	4.7	3
63	Soft Nanoonions: A Dynamic Overview onto Catanionic Vesicles Temperature-Driven Transition. International Journal of Molecular Sciences, 2020, 21, 6804.	4.1	3
64	The Architectural Terracotta Marks of Bracara Augusta (Braga, Portugal): A First Typology Classification. Heritage, 2021, 4, 4126-4147.	1,9	0
65	The association between a non-ionic microemulsion and hydrophobically modified PEG. A rheological investigation. , 0, , 40-43.		0