Tokuma Fukuoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8049832/publications.pdf Version: 2024-02-01

ΤΟΚΙΙΜΑ ΕΠΚΠΟΚΑ

#	Article	IF	CITATIONS
1	Preparation of pH-Responsive Poly(γ-glutamic acid) Hydrogels by Enzymatic Cross-Linking. ACS Biomaterials Science and Engineering, 2022, 8, 551-559.	5.2	9
2	Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks. Polymer Journal, 2021, 53, 1037-1045.	2.7	4
3	Bio-Based, Flexible, and Tough Material Derived from Îμ-Poly- <scp>l</scp> -lysine and Fructose via the Maillard Reaction. ACS Omega, 2020, 5, 22793-22799.	3.5	6
4	Moldable Material from Îμ-Poly-l-lysine and Lignosulfonate: Mechanical and Self-Healing Properties of a Bio-Based Polyelectrolyte Complex. ACS Omega, 2019, 4, 9756-9762.	3.5	10
5	Biosynthesis of mono-acylated mannosylerythritol lipid in an acyltransferase gene-disrupted mutant of Pseudozyma tsukubaensis. Applied Microbiology and Biotechnology, 2018, 102, 1759-1767.	3.6	19
6	Moldable and Humidity-Responsive Self-Healable Complex from Lignosulfonate and Cationic Polyelectrolyte. ACS Sustainable Chemistry and Engineering, 2018, 6, 14831-14837.	6.7	16
7	Efficient Production of Acid-Form Sophorolipids from Waste Glycerol and Fatty Acid Methyl Esters by <i>Candida floricola</i> . Journal of Oleo Science, 2018, 67, 489-496.	1.4	42
8	Degradation profiles of biodegradable plastic films by biodegradable plastic-degrading enzymes from the yeast Pseudozyma antarctica and the fungus Paraphoma sp. B47-9. Polymer Degradation and Stability, 2017, 141, 26-32.	5.8	33
9	Selective Production of Acid-form Sophorolipids from Glycerol by <i>Candida floricola</i> . Journal of Oleo Science, 2017, 66, 1365-1373.	1.4	22
10	Synthesis and Characterization of Dioctanoyl Glycerate as Water-soluble Trypsin Inhibitor. Journal of Oleo Science, 2016, 65, 251-256.	1.4	2
11	Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains. Applied Microbiology and Biotechnology, 2016, 100, 1733-1741.	3.6	12
12	A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis. PLoS ONE, 2016, 11, e0157858.	2.5	25
13	Mannosylerythritol Lipids: Production and Applications. Journal of Oleo Science, 2015, 64, 133-141.	1.4	81
14	Application of Yeast Glycolipid Biosurfactant, Mannosylerythritol Lipid, as Agrospreaders. Journal of Oleo Science, 2015, 64, 689-695.	1.4	19
15	Bacterial production of short-chain organic acids and trehalose from levulinic acid: A potential cellulose-derived building block as a feedstock for microbial production. Bioresource Technology, 2015, 177, 381-386.	9.6	25
16	Microbial resolution of dl-glyceric acid for l-glyceric acid production with newly isolated bacterial strains. Journal of Bioscience and Bioengineering, 2015, 119, 554-557.	2.2	7
17	Isolation and characterization of bacterial strains with the ability to utilize high concentrations of levulinic acid, a platform chemical from inedible biomass. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1552-1555.	1.3	11
18	Selective formation of mannosyl-l-arabitol lipid by Pseudozyma tsukubaensis JCM16987. Applied Microbiology and Biotechnology, 2015, 99, 5833-5841.	3.6	12

Токима Ғикиока

#	Article	IF	CITATIONS
19	Spontaneous Vesicle Formation from Sodium Salt of Acidic Sophorolipid and Its Application as a Skin Penetration Enhancer. Journal of Oleo Science, 2014, 63, 141-147.	1.4	17
20	Monolayer Behavior of Binary Systems of Lactonic and Acidic Forms of Sophorolipids: Thermodynamic Analyses of Langmuir Monolayers and AFM Study of Langmuir^ ^ndash;Blodgett Monolayers. Journal of Oleo Science, 2014, 63, 67-73.	1.4	7
21	Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeasts. Applied Microbiology and Biotechnology, 2014, 98, 823-830.	3.6	9
22	Production of d-arabitol from raw glycerol by Candida quercitrusa. Applied Microbiology and Biotechnology, 2014, 98, 2947-2953.	3.6	26
23	Deep-sea Rhodococcus sp. BS-15, Lacking the Phytopathogenic fas Genes, Produces a Novel Glucotriose Lipid Biosurfactant. Marine Biotechnology, 2014, 16, 484-493.	2.4	23
24	Production of mannitol from raw glycerol by Candida azyma. Journal of Bioscience and Bioengineering, 2014, 117, 725-729.	2.2	22
25	Biosurfactant-producing yeasts widely inhabit various vegetables and fruits. Bioscience, Biotechnology and Biochemistry, 2014, 78, 516-523.	1.3	16
26	Xylose induces the phyllosphere yeast Pseudozyma antarctica to produce a cutinase-like enzyme which efficiently degrades biodegradable plastics. Journal of Bioscience and Bioengineering, 2014, 117, 325-329.	2.2	35
27	Effect of Membrane-bound Aldehyde Dehydrogenase-encoding Gene Disruption on Glyceric Acid Production in Gluconobacter oxydans. Journal of Oleo Science, 2014, 63, 953-957.	1.4	2
28	Enzymatic degradation of polyester films by a cutinase-like enzyme from Pseudozyma antarctica: surface plasmon resonance and atomic force microscopy study. Applied Microbiology and Biotechnology, 2013, 97, 8591-8598.	3.6	33
29	Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, <i>Pseudozyma aphidis</i> and <i>Pseudozyma hubeiensis</i> . FEMS Yeast Research, 2013, 13, 44-49.	2.3	38
30	Production of mannosylerythritol lipids and their application in cosmetics. Applied Microbiology and Biotechnology, 2013, 97, 4691-4700.	3.6	99
31	Production of Sophorolipids from Non-edible Jatropha Oil by Stamerella bombicola NBRC 10243 and Evaluation of their Interfacial Properties. Journal of Oleo Science, 2013, 62, 857-864.	1.4	26
32	Production of a Novel Mannosylerythritol Lipid Containing a Hydroxy Fatty Acid from Castor Oil by Pseudozyma tsukubaensis. Journal of Oleo Science, 2013, 62, 381-389.	1.4	28
33	Characterization of Mannosylerythritol Lipids Containing Hexadecatetraenoic Acid Produced from Cuttlefish Oil by Pseudozyma churashimaensis OK96. Journal of Oleo Science, 2013, 62, 319-327.	1.4	12
34	Isolation and Screening of Glycolipid Biosurfactant Producers from Sugarcane. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1788-1791.	1.3	15
35	Synthesis and Interfacial Properties of Monoacyl Glyceric Acids as a New Class of Green Surfactants. Journal of Oleo Science, 2012, 61, 343-348.	1.4	17
36	Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T. Applied Microbiology and Biotechnology, 2012, 96, 931-938.	3.6	42

Токима Гикиока

#	Article	IF	CITATIONS
37	Stepwise synthesis of 2,3- <i>O</i> -dipalmitoyl-D-glyceric acid and an in vitro evaluation of its cytotoxicity. Journal of Oleo Science, 2012, 61, 337-341.	1.4	5
38	Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D. Journal of Oleo Science, 2012, 61, 285-289.	1.4	9
39	Low Molecular Weight Gelators Based on Biosurfactants, Cellobiose Lipids by Cryptococcus humicola. Journal of Oleo Science, 2012, 61, 659-664.	1.4	16
40	Glycolipid Biosurfactants, Mannosylerythritol Lipids, Show Antioxidant and Protective Effects against H2O2-Induced Oxidative Stress in Cultured Human Skin Fibroblasts. Journal of Oleo Science, 2012, 61, 457-464.	1.4	102
41	The Moisturizing Effects of Glycolipid Biosurfactants, Mannosylerythritol Lipids, on Human Skin. Journal of Oleo Science, 2012, 61, 407-412.	1.4	65
42	The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration. Carbohydrate Research, 2012, 351, 81-86.	2.3	32
43	Production of Glycolipid Biosurfactants, Cellobiose Lipids, by <i>Cryptococcus humicola</i> JCM 1461 and Their Interfacial Properties. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1597-1599.	1.3	44
44	Production and Characterization of a Glycolipid Biosurfactant, Mannosylerythritol Lipid B, from Sugarcane Juice by <i>Ustilago scitaminea</i> NBRC 32730. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1371-1376.	1.3	42
45	Synthesis of Dilinoleoyl-D-Glyceric Acid and Evaluation of Its Cytotoxicity to Human Dermal Fibroblast and Endothelial Cells. Journal of Oleo Science, 2011, 60, 483-487.	1.4	8
46	Bioprocessing of Glycerol into Glyceric Acid for Use in Bioplastic Monomer. Journal of Oleo Science, 2011, 60, 369-373.	1.4	18
47	Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. Journal of Bioscience and Bioengineering, 2011, 111, 702-705.	2.2	49
48	Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. Journal of Bioscience and Bioengineering, 2011, 112, 137-144.	2.2	51
49	Biochemical synthesis of novel, self-assembling glycolipids from ricinoleic acid by a recombinant α-glucosidase from Geobacillus sp Biotechnology Letters, 2011, 33, 139-145.	2.2	8
50	Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior. Carbohydrate Research, 2011, 346, 266-271.	2.3	42
51	Membrane-Bound Alcohol Dehydrogenase Is Essential for Glyceric Acid Production in Acetobacter tropicalis. Journal of Oleo Science, 2011, 60, 489-494.	1.4	8
52	Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Applied Microbiology and Biotechnology, 2010, 88, 679-688.	3.6	49
53	Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. Journal of Bioscience and Bioengineering, 2010, 110, 169-175.	2.2	28
54	Two-stage electrodialytic concentration of glyceric acid from fermentation broth. Journal of Bioscience and Bioengineering, 2010, 110, 690-695.	2.2	14

Токима Ғикиока

#	Article	IF	CITATIONS
55	Novel glycolipid-type surfactants synthesized by a recombinant α-glucosidase of Geobacillus sp. HTA-462, a deep-sea microorganism. Journal of Biotechnology, 2010, 150, 408-409.	3.8	0
56	The role of <i>PaAAC1</i> encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in the basidiomycetous yeast <i>Pseudozyma antarctica</i> . Yeast, 2010, 27, 379-388.	1.7	6
57	Identification of the gene <i>PaEMT1</i> for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast <i>Pseudozyma antarctica</i> . Yeast, 2010, 27, 905-917.	1.7	27
58	Use of a <i>Gluconobacter frateurii</i> Mutant to Prevent Dihydroxyacetone Accumulation during Glyceric Acid Production from Glycerol. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2330-2332.	1.3	17
59	Disruption of the Membrane-Bound Alcohol Dehydrogenase-Encoding Gene Improved Glycerol Use and Dihydroxyacetone Productivity in <i>Gluconobacter oxydans</i> . Bioscience, Biotechnology and Biochemistry, 2010, 74, 1391-1395.	1.3	31
60	Microbial Production of Glyceric Acid, an Organic Acid That Can Be Mass Produced from Glycerol. Applied and Environmental Microbiology, 2009, 75, 7760-7766.	3.1	108
61	Application of electrodialysis to glycerate recovery from a glycerol containing model solution and culture broth. Journal of Bioscience and Bioengineering, 2009, 107, 425-428.	2.2	19
62	Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Applied Microbiology and Biotechnology, 2009, 83, 1017-1025.	3.6	62
63	Biotechnological production of d-glyceric acid and its application. Applied Microbiology and Biotechnology, 2009, 84, 445-452.	3.6	70
64	Self-assembling properties of glycolipid biosurfactants and their potential applications. Current Opinion in Colloid and Interface Science, 2009, 14, 315-328.	7.4	246
65	Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids and Surfaces B: Biointerfaces, 2009, 68, 207-212.	5.0	37
66	Biotransformation of glycerol to d-glyceric acid by Acetobacter tropicalis. Applied Microbiology and Biotechnology, 2009, 81, 1033-1039.	3.6	56
67	Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnology and Applied Biochemistry, 2009, 53, 39.	3.1	65
68	Production of Glyceric Acid by <i>Gluconobacter</i> sp. NBRC3259 Using Raw Glycerol. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1799-1805.	1.3	49
69	Production of Glycolipid Biosurfactants, Mannosylerythritol Lipids, by a Smut Fungus, <i>Ustilago scitaminea </i> NBRC 32730. Bioscience, Biotechnology and Biochemistry, 2009, 73, 788-792.	1.3	37
70	Production of Glycolipid Biosurfactants, Mannosylerythritol Lipids, Using Sucrose by Fungal and Yeast Strains, and Their Interfacial Properties. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2352-2355.	1.3	25
71	Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Applied Microbiology and Biotechnology, 2008, 78, 37-46.	3.6	65
72	Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids and Surfaces B: Biointerfaces, 2008, 65, 106-112.	5.0	60

Токима Ғикиока

#	Article	IF	CITATIONS
73	A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydrate Research, 2008, 343, 555-560.	2.3	86
74	A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydrate Research, 2008, 343, 2947-2955.	2.3	34
75	Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. Journal of Bioscience and Bioengineering, 2008, 105, 493-502.	2.2	70
76	Convenient Transformation of Anamorphic Basidiomycetous Yeasts Belonging to Genus Pseudozyma Induced by Electroporation. Journal of Bioscience and Bioengineering, 2007, 104, 517-520.	2.2	20
77	Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering, 2007, 104, 78-81.	2.2	93
78	Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance. Colloids and Surfaces B: Biointerfaces, 2007, 58, 165-171.	5.0	54
79	Characterization of the genusPseudozymaby the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Research, 2007, 7, 286-292.	2.3	115
80	Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Applied Microbiology and Biotechnology, 2007, 74, 307-315.	3.6	71
81	Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Applied Microbiology and Biotechnology, 2007, 75, 521-531.	3.6	97
82	Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Applied Microbiology and Biotechnology, 2007, 76, 801-810.	3.6	88
83	A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnology Letters, 2007, 29, 473-480.	2.2	60
84	Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnology Letters, 2007, 29, 1111-1118.	2.2	62
85	Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast,Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast, 2006, 23, 661-671.	1.7	24
86	Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Applied Microbiology and Biotechnology, 2006, 73, 305-313.	3.6	115
87	Thermal behavior and phase morphology of miscible hydrogen-bonded blends of poly(ε-caprolactone) and enzymatically polymerized polyphenol. Journal of Applied Polymer Science, 2006, 101, 149-160.	2.6	4
88	New Positive-Type Photoresists Based on Enzymatically Synthesized Polyphenols. Macromolecular Rapid Communications, 2004, 25, 441-444.	3.9	35
89	Effect of Phenolic Monomer Structure of Precursor Polymers in Oxidative Coupling of Enzymatically Synthesized Polyphenols. Macromolecules, 2004, 37, 5911-5915.	4.8	18
90	Synthesis of Poly(amino acid)â^'Polyphenol Hybrids by Oxidative Cross-Coupling. Macromolecules, 2004, 37, 8481-8484.	4.8	8

#	ARTICLE	IF	CITATIONS
91	Synthesis of Ultrahigh Molecular Weight Polyphenols by Oxidative Coupling. Macromolecules, 2003, 36, 8213-8215.	4.8	30
92	Protease-Catalyzed Regioselective Polymerization and Copolymerization of Glutamic Acid Diethyl Ester. Biomacromolecules, 2002, 3, 318-323.	5.4	60
93	Enzymatic Polymerization of Tyrosine Derivatives. Peroxidase- and Protease-Catalyzed Synthesis of Poly(tyrosine)s with Different Structures. Biomacromolecules, 2002, 3, 768-774.	5.4	66
94	Peroxidase-Catalyzed Oxidative Polymerization of 4,4â€~Dihydroxydiphenyl Ether. Formation of α,ï‰-Hydroxyoligo(1,4-phenylene oxide) through an Unusual Reaction Pathway. Macromolecules, 2000, 33, 9152-9155.	4.8	40