
Denise Nardelli-haefliger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8049010/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Siglec-6 as a New Potential Immune Checkpoint for Bladder Cancer Patients. European Urology Focus, 2022, 8, 748-751.	3.1	6
2	Targeting Endothelial Connexin37 Reduces Angiogenesis and Decreases Tumor Growth. International Journal of Molecular Sciences, 2022, 23, 2930.	4.1	4
3	Novel intravesical bacterial immunotherapy induces rejection of BCG-unresponsive established bladder tumors. , 2022, 10, e004325.		4
4	Vaccination with a nanoparticle E7 vaccine can prevent tumor recurrence following surgery in a human papillomavirus head and neck cancer model. Oncolmmunology, 2021, 10, 1912473.	4.6	8
5	Siglec-7 May Limit Natural Killer Cell–mediated Antitumor responses in Bladder Cancer Patients. European Urology Open Science, 2021, 34, 79-82.	0.4	5
6	Intramuscular Immunization Induces Antigen-specific Antibodies in Urine. European Urology Focus, 2020, 6, 280-283.	3.1	0
7	Differentially regulated promoters for antigen expression in Salmonella vaccine strains. Vaccine, 2020, 38, 4154-4161.	3.8	1
8	Bivalent therapeutic vaccine against HPV16/18 genotypes consisting of a fusion protein between the extra domain A from human fibronectin and HPV16/18 E7 viral antigens. , 2020, 8, e000704.		8
9	Targeting connexin37 alters angiogenesis and arteriovenous differentiation in the developing mouse retina. FASEB Journal, 2020, 34, 8234-8249.	0.5	10
10	Intravesical Ty21a Vaccine Promotes Dendritic Cells and T Cell–Mediated Tumor Regression in the MB49 Bladder Cancer Model. Cancer Immunology Research, 2019, 7, 621-629.	3.4	26
11	Carboplatin/paclitaxel, E7-vaccination and intravaginal CpG as tri-therapy towards efficient regression of genital HPV16 tumors. , 2019, 7, 122.		24
12	Double Positive CD4+CD8+ T Cells Are Enriched in Urological Cancers and Favor T Helper-2 Polarization. Frontiers in Immunology, 2019, 10, 622.	4.8	55
13	Therapeutic efficacy of the live-attenuated Mycobacterium tuberculosis vaccine, MTBVAC, in a preclinical model of bladder cancer. Translational Research, 2018, 197, 32-42.	5.0	9
14	Nanoparticle Conjugation of Human Papillomavirus 16 E7-long Peptides Enhances Therapeutic Vaccine Efficacy against Solid Tumors in Mice. Cancer Immunology Research, 2018, 6, 1301-1313.	3.4	27
15	Conventional and PD-L1-expressing Regulatory T Cells are Enriched During BCG Therapy and may Limit its Efficacy. European Urology, 2018, 74, 540-544.	1.9	53
16	Preclinical efficacy and safety of the Ty21a vaccine strain for intravesical immunotherapy of non-muscle-invasive bladder cancer. Oncolmmunology, 2017, 6, e1265720.	4.6	19
17	Targeting Cx40 (Connexin40) Expression or Function Reduces Angiogenesis in the Developing Mouse Retina. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2136-2146.	2.4	29
18	Immunoregulation of Dendritic Cell Subsets by Inhibitory Receptors in Urothelial Cancer. European Urology, 2017, 71, 854-857.	1.9	22

#	Article	IF	CITATIONS
19	Intravesical Bacillus Calmette Guerin Combined with a Cancer Vaccine Increases Local T-Cell Responses in Non-muscle–Invasive Bladder Cancer Patients. Clinical Cancer Research, 2017, 23, 717-725.	7.0	24
20	ILC2-modulated T cell–to-MDSC balance is associated with bladder cancer recurrence. Journal of Clinical Investigation, 2017, 127, 2916-2929.	8.2	176
21	Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget, 2016, 7, 14015-14028.	1.8	40
22	Immunogenic Human Papillomavirus Pseudovirus-Mediated Suicide-Gene Therapy for Bladder Cancer. International Journal of Molecular Sciences, 2016, 17, 1125.	4.1	14
23	Local <i>Salmonella</i> immunostimulation recruits vaccine-specific CD8 T cells and increases regression of bladder tumor. Oncolmmunology, 2015, 4, e1016697.	4.6	11
24	High-throughput monitoring of human tumor-specific T-cell responses with large peptide pools. Oncolmmunology, 2015, 4, e1029702.	4.6	17
25	Immunotherapeutic strategies for bladder cancer. Human Vaccines and Immunotherapeutics, 2014, 10, 977-981.	3.3	6
26	Intravaginal and Subcutaneous Immunization Induced Vaccine Specific CD8 T Cells and Tumor Regression in the Bladder. Journal of Urology, 2014, 191, 814-822.	0.4	14
27	Intravaginal live attenuatedSalmonellaincreases local antitumor vaccine-specific CD8+T cells. Oncolmmunology, 2013, 2, e22944.	4.6	12
28	Vaccination Route Matters for Mucosal Tumors. Science Translational Medicine, 2013, 5, 172fs4.	12.4	16
29	What is the influence of vaccination's routes on the regression of tumors located at mucosal sites?. Oncolmmunology, 2012, 1, 242-243.	4.6	6
30	Detection of functional antigen-specific T cells from urine of non-muscle invasive bladder cancer patients. Oncolmmunology, 2012, 1, 694-698.	4.6	12
31	A novel mucosal orthotopic murine model of human papillomavirusâ€associated genital cancers. International Journal of Cancer, 2011, 128, 2105-2113.	5.1	33
32	Parenteral is more efficient than mucosal immunization to induce regression of human papillomavirusâ€associated genital tumors. International Journal of Cancer, 2011, 129, 762-772.	5.1	29
33	A Murine Genital-Challenge Model Is a Sensitive Measure of Protective Antibodies against Human Papillomavirus Infection. Journal of Virology, 2011, 85, 13253-13259.	3.4	90
34	Induction of human papillomavirus oncogeneâ€specific CD8 Tâ€cell effector responses in the genital mucosa of vaccinated mice. International Journal of Cancer, 2010, 126, 2469-2478.	5.1	17
35	Rectal and vaginal immunization of mice with human papillomavirus L1 virus-like particles. Vaccine, 2009, 27, 2326-2334.	3.8	23
36	Immunobiology of Human Papillomavirus Infection and Vaccination - Implications for Second Generation Vaccines, Vaccine, 2008, 26, K62-K67.	3.8	52

#	Article	IF	CITATIONS
37	Monitoring of Vaccine-Specific Gamma Interferon Induction in Genital Mucosa of Mice by Real-Time Reverse Transcription-PCR. Vaccine Journal, 2008, 15, 757-764.	3.1	15
38	Intravaginal Immunization of Mice with Recombinant <i>Salmonella enterica</i> Serovar Typhimurium Expressing Human Papillomavirus Type 16 Antigens as a Potential Route of Vaccination against Cervical Cancer. Infection and Immunity, 2008, 76, 1940-1951.	2.2	46
39	<i>Salmonella enterica</i> Serovar Typhi Ty21a Expressing Human Papillomavirus Type 16 L1 as a Potential Live Vaccine against Cervical Cancer and Typhoid Fever. Vaccine Journal, 2007, 14, 1285-1295.	3.1	60
40	Humoral and cellular immune responses to airway immunization of mice with human papillomavirus type 16 virus-like particles and mucosal adjuvants. Antiviral Research, 2007, 76, 75-85.	4.1	26
41	Chapter 17: Second generation HPV vaccines to prevent cervical cancer. Vaccine, 2006, 24, S147-S153.	3.8	46
42	The importance of mucosal immunity in defense against epithelial cancers. Current Opinion in Immunology, 2005, 17, 175-179.	5.5	14
43	Immune responses induced by lower airway mucosal immunisation with a human papillomavirus type 16 virus-like particle vaccine. Vaccine, 2005, 23, 3634-3641.	3.8	93
44	Mucosal vaccines for HPV. Papillomavirus Report, 2005, 16, 327-332.	0.2	0
45	Specific Antibody Levels at the Cervix During the Menstrual Cycle of Women Vaccinated With Human Papillomavirus 16 Virus-Like Particles. Journal of the National Cancer Institute, 2003, 95, 1128-1137.	6.3	205
46	Trachea, Lung, and Tracheobronchial Lymph Nodes Are the Major Sites Where Antigen-Presenting Cells Are Detected after Nasal Vaccination of Mice with Human Papillomavirus Type 16 Virus-Like Particles. Journal of Virology, 2002, 76, 12596-12602.	3.4	40
47	The Nature of the Attenuation of <i>Salmonella typhimurium</i> Strains Expressing Human Papillomavirus Type 16 Virus-Like Particles Determines the Systemic and Mucosal Antibody Responses in Nasally Immunized Mice. Infection and Immunity, 1999, 67, 3674-3679.	2.2	38
48	Mucosal but Not Parenteral Immunization with Purified Human Papillomavirus Type 16 Virus-Like Particles Induces Neutralizing Titers of Antibodies throughout the Estrous Cycle of Mice. Journal of Virology, 1999, 73, 9609-9613.	3.4	69
49	Nasal Immunization of Mice with Human Papillomavirus Type 16 Virus-Like Particles Elicits Neutralizing Antibodies in Mucosal Secretions. Journal of Virology, 1998, 72, 8220-8229.	3.4	149