Yasuhiro Shiraishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8048546/publications.pdf

Version: 2024-02-01

167 papers 13,355 citations

20797 60 h-index 23514 111 g-index

184 all docs

184 docs citations

times ranked

184

12592 citing authors

#	Article	IF	CITATIONS
1	Hydrogen peroxide splitting on Nafion-coated graphene quantum dots/carbon nitride photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113949.	2.0	1
2	Photocatalytic Dinitrogen Fixation with Water on High-Phosphorus-Doped Carbon Nitride with Surface Nitrogen Vacancies. Langmuir, 2022, 38, 7137-7145.	1.6	5
3	Fluorometric and colorimetric detection of hypochlorous acid and hypochlorite by a naphthalimide–dicyanoisophorone conjugate. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 112997.	2.0	12
4	Polythiophene-Doped Resorcinol–Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion. Journal of the American Chemical Society, 2021, 143, 12590-12599.	6.6	96
5	Spontaneous Isomerization of a Hydroxynaphthalene-Containing Spiropyran in Polar Solvents Enhanced by Hydrogen Bonding Interactions. ACS Omega, 2021, 6, 35619-35628.	1.6	4
6	Photocatalytic Dinitrogen Reduction with Water on Boron-Doped Carbon Nitride Loaded with Nickel Phosphide Particles. Langmuir, 2020, 36, 734-741.	1.6	27
7	Solar-to-hydrogen peroxide energy conversion on resorcinol–formaldehyde resin photocatalysts prepared by acid-catalysed polycondensation. Communications Chemistry, 2020, 3, .	2.0	55
8	A Naphthalimide–Sulfonylhydrazine Conjugate as a Fluorescent Chemodosimeter for Hypochlorite. Chemosensors, 2020, 8, 123.	1.8	12
9	Photocatalytic hydrogen peroxide splitting on metal-free powders assisted by phosphoric acid as a stabilizer. Nature Communications, 2020, 11 , 3386.	5.8	65
10	Photocatalytic NH ₃ Splitting on TiO ₂ Particles Decorated with Pt–Au Bimetallic Alloy Nanoparticles. ACS Applied Nano Materials, 2020, 3, 1612-1620.	2.4	31
11	Photocatalytic Dinitrogen Fixation with Water on Bismuth Oxychloride in Chloride Solutions for Solar-to-Chemical Energy Conversion. Journal of the American Chemical Society, 2020, 142, 7574-7583.	6.6	140
12	Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nature Materials, 2019, 18, 985-993.	13.3	429
13	A coumarin–dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water. RSC Advances, 2019, 9, 28636-28641.	1.7	21
14	Doping of Nb ⁵⁺ Species at the Auâ€"TiO ₂ Interface for Plasmonic Photocatalysis Enhancement. Langmuir, 2019, 35, 5455-5462.	1.6	21
15	Hydrogen Peroxide Production on a Carbon Nitride–Boron Nitrideâ€Reduced Graphene Oxide Hybrid Photocatalyst under Visible Light. ChemCatChem, 2018, 10, 2070-2077.	1.8	97
16	Photocatalytic hydrogenation of azobenzene to hydrazobenzene on cadmium sulfide under visible light irradiation. Chemical Communications, 2018, 54, 452-455.	2.2	29
17	Nitrogen Fixation with Water on Carbon-Nitride-Based Metal-Free Photocatalysts with 0.1% Solar-to-Ammonia Energy Conversion Efficiency. ACS Applied Energy Materials, 2018, 1, 4169-4177.	2.5	103
18	Photoreductive synthesis of monodispersed Au nanoparticles with citric acid as reductant and surface stabilizing reagent. RSC Advances, 2017, 7, 6187-6192.	1.7	41

#	Article	IF	CITATIONS
19	Selective Nitrate-to-Ammonia Transformation on Surface Defects of Titanium Dioxide Photocatalysts. ACS Catalysis, 2017, 7, 3713-3720.	5.5	150
20	Titanium Dioxide/Reduced Graphene Oxide Hybrid Photocatalysts for Efficient and Selective Partial Oxidation of Cyclohexane. ACS Catalysis, 2017, 7, 293-300.	5.5	91
21	Quantum tunneling injection of hot electrons in Au/TiO ₂ plasmonic photocatalysts. Nanoscale, 2017, 9, 8349-8361.	2.8	75
22	An antimalarial drug, tafenoquine, as a fluorescent receptor for ratiometric detection of hypochlorite. RSC Advances, 2017, 7, 30453-30458.	1.7	6
23	Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. Journal of the American Chemical Society, 2017, 139, 10929-10936.	6.6	721
24	Synthesis of Au Nanoparticles with Benzoic Acid as Reductant and Surface Stabilizer Promoted Solely by UV Light. Langmuir, 2017, 33, 13797-13804.	1.6	22
25	Naphthalimide–coumarin conjugate: ratiometric fluorescent receptor for self-calibrating quantification of cyanide anions in cells. RSC Advances, 2017, 7, 32304-32309.	1.7	17
26	Photocatalytic Dehalogenation of Aromatic Halides on Ta ₂ O ₅ -Supported Pt–Pd Bimetallic Alloy Nanoparticles Activated by Visible Light. ACS Catalysis, 2017, 7, 5194-5201.	5.5	47
27	Mellitic Triimide-Doped Carbon Nitride as Sunlight-Driven Photocatalysts for Hydrogen Peroxide Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 6478-6485.	3.2	92
28	Graphitic Carbon Nitride Doped with Biphenyl Diimide: Efficient Photocatalyst for Hydrogen Peroxide Production from Water and Molecular Oxygen by Sunlight. ACS Catalysis, 2016, 6, 7021-7029.	5.5	282
29	Coumarin–Imine–Quinoxaline Linkage Designed Based on the Strecker Reaction as a Receptor for Fluorometric Cyanide Anion Detection in Neutral Media. Chemistry Letters, 2016, 45, 1294-1296.	0.7	7
30	Carbon Nitride–Aromatic Diimide–Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. Journal of the American Chemical Society, 2016, 138, 10019-10025.	6.6	406
31	Coumarin–Spiropyran Dyad with a Hydrogenated Pyran Moiety for Rapid, Selective, and Sensitive Fluorometric Detection of Cyanide Anion. Analytical Chemistry, 2016, 88, 6805-6811.	3.2	74
32	Au Nanoparticles Supported on BiVO ₄ : Effective Inorganic Photocatalysts for H ₂ O ₂ Production from Water and O ₂ under Visible Light. ACS Catalysis, 2016, 6, 4976-4982.	5.5	272
33	Off–on fluorometric detection of cyanide anions in an aqueous mixture by an indane-based receptor. New Journal of Chemistry, 2016, 40, 1237-1243.	1.4	19
34	A pyrylium–coumarin dyad as a colorimetric receptor for ratiometric detection of cyanide anions by two absorption bands in the visible region. New Journal of Chemistry, 2016, 40, 195-201.	1.4	19
35	Photocatalytic Hydrogenation of Nitroaromatics to Anilines on Silica-Supported Iron Oxides with Hydrazine Monohydrate as a Reductant. Journal of Chemical Engineering of Japan, 2015, 48, 141-146.	0.3	4
36	Photocatalytic hydrogenolysis of epoxides using alcohols as reducing agents on TiO ₂ loaded with Pt nanoparticles. Chemical Communications, 2015, 51, 2294-2297.	2.2	14

#	Article	IF	Citations
37	One-Pot Synthesis of Imines from Nitroaromatics and Alcohols by Tandem Photocatalytic and Catalytic Reactions on Degussa (Evonik) P25 Titanium Dioxide. ACS Applied Materials & Thterfaces, 2015, 7, 3797-3806.	4.0	44
38	Photocatalytic secondary amine synthesis from azobenzenes and alcohols on TiO ₂ loaded with Pd nanoparticles. New Journal of Chemistry, 2015, 39, 2856-2860.	1.4	16
39	Hot-Electron-Induced Highly Efficient O ₂ Activation by Pt Nanoparticles Supported on Ta ₂ O ₅ Driven by Visible Light. Journal of the American Chemical Society, 2015, 137, 9324-9332.	6.6	139
40	Effects of Surface Defects on Photocatalytic H ₂ O ₂ Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation. ACS Catalysis, 2015, 5, 3058-3066.	5.5	289
41	Effects of substituents on fluorometric detection of cyanide anions by indolium–coumarin dyads. Physical Chemistry Chemical Physics, 2015, 17, 25027-25036.	1.3	14
42	Amino-substituted spirothiopyran as an initiator for self-assembly of gold nanoparticles. RSC Advances, 2015, 5, 77572-77580.	1.7	2
43	One-pot synthesis of secondary amines from alcohols and nitroarenes on TiO ₂ loaded with Pd nanoparticles under UV irradiation. New Journal of Chemistry, 2015, 39, 2467-2473.	1.4	17
44	Sunlightâ€Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metalâ€Free Photocatalysts. Angewandte Chemie - International Edition, 2014, 53, 13454-13459.	7.2	467
45	Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C ₃ N ₄) Photocatalyst Activated by Visible Light. ACS Catalysis, 2014, 4, 774-780.	5.5	580
46	Rapid, selective, and sensitive fluorometric detection of cyanide anions in aqueous media by cyanine dyes with indolium–coumarin linkages. Chemical Communications, 2014, 50, 11583-11586.	2.2	52
47	Spiropyran as a reusable chemosensor for selective colorimetric detection of aromatic thiols. Physical Chemistry Chemical Physics, 2014, 16, 12137-12142.	1.3	36
48	Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chemical Communications, 2014, 50, 15255-15258.	2.2	168
49	Selective Photocatalytic Oxidation of Aniline to Nitrosobenzene by Pt Nanoparticles Supported on TiO ₂ under Visible Light Irradiation. ACS Catalysis, 2014, 4, 2418-2425.	5.5	69
50	Spiropyran-Modified Gold Nanoparticles: Reversible Size Control of Aggregates by UV and Visible Light Irradiations. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7554-7562.	4.0	73
51	Noble-Metal-Free Deoxygenation of Epoxides: Titanium Dioxide as a Photocatalytically Regenerable Electron-Transfer Catalyst. ACS Catalysis, 2014, 4, 1642-1649.	5.5	32
52	Selective Hydrogen Peroxide Formation by Titanium Dioxide Photocatalysis with Benzylic Alcohols and Molecular Oxygen in Water. ACS Catalysis, 2013, 3, 2222-2227.	5.5	157
53	Mechanism for Different Fluorescence Response of a Coumarin–Amide–Dipicolylamine Linkage to Zn(II) and Cd(II) in Water. Journal of Physical Chemistry A, 2013, 117, 1474-1482.	1.1	56
54	Rutile Crystallites Isolated from Degussa (Evonik) P25 TiO ₂ : Highly Efficient Photocatalyst for Chemoselective Hydrogenation of Nitroaromatics. ACS Catalysis, 2013, 3, 2318-2326.	5. 5	65

#	Article	IF	CITATIONS
55	Pt–Cu Bimetallic Alloy Nanoparticles Supported on Anatase TiO ₂ : Highly Active Catalysts for Aerobic Oxidation Driven by Visible Light. ACS Nano, 2013, 7, 9287-9297.	7.3	187
56	A phenylbenzoxazole–amide–azacrown linkage as a selective fluorescent receptor for ratiometric sensing of Pb(ii) in aqueous media. Chemical Communications, 2013, 49, 3434.	2.2	34
57	Selective fluorometric detection of aromatic thiols by a chemosensor containing two electrophilic sites with different local softness. Chemical Communications, 2013, 49, 11680.	2,2	46
58	N-Monoalkylation of Amines with Alcohols by Tandem Photocatalytic and Catalytic Reactions on TiO ₂ Loaded with Pd Nanoparticles. ACS Catalysis, 2013, 3, 312-320.	5.5	128
59	Supported Au–Cu Bimetallic Alloy Nanoparticles: An Aerobic Oxidation Catalyst with Regenerable Activity by Visibleâ€Light Irradiation. Angewandte Chemie - International Edition, 2013, 52, 5295-5299.	7.2	176
60	Photocatalytic hydrodenitrogenation of aromatic cyanides on TiO2 loaded with Pd nanoparticles. Catalysis Science and Technology, 2013, 3, 1718.	2.1	12
61	Spiropyran–cholesterol conjugate as a photoresponsive organogelator. New Journal of Chemistry, 2013, 37, 2642.	1.4	12
62	Lightâ€Triggered Selfâ€Assembly of Gold Nanoparticles Based on Photoisomerization of Spirothiopyran. Angewandte Chemie - International Edition, 2013, 52, 8304-8308.	7.2	80
63	Colorimetric Sensing of Cu(II) in Aqueous Media with a Spiropyran Derivative via a Oxidative Dehydrogenation Mechanism. ACS Applied Materials & Early; Interfaces, 2013, 5, 3456-3463.	4.0	45
64	Selective side-chain oxidation of alkyl-substituted aromatics on TiO2 partially coated with WO3 as a photocatalyst. Catalysis Science and Technology, 2013, 3, 2270.	2.1	36
65	Phenylbenzoxazole–Amide–Cyclen Linkage as a Ratiometric Fluorescent Receptor for Zn(II) in Water. Journal of Physical Chemistry A, 2013, 117, 3387-3395.	1.1	8
66	Titanium Oxide-based Photocatalysts for Selective Organic Transformations. Journal of the Japan Petroleum Institute, 2012, 55, 287-298.	0.4	17
67	Selective colorimetric sensing of Co(ii) in aqueous media with a spiropyran–amide–dipicolylamine linkage under UV irradiation. Chemical Communications, 2012, 48, 5485.	2,2	34
68	Highly Efficient and Selective Hydrogenation of Nitroaromatics on Photoactivated Rutile Titanium Dioxide. ACS Catalysis, 2012, 2, 2475-2481.	5 . 5	131
69	Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Ptnanoparticles. Catalysis Science and Technology, 2012, 2, 400-405.	2.1	84
70	Gold Nanoparticles Located at the Interface of Anatase/Rutile TiO ₂ Particles as Active Plasmonic Photocatalysts for Aerobic Oxidation. Journal of the American Chemical Society, 2012, 134, 6309-6315.	6.6	610
71	Photocatalytic H ₂ O ₂ Production from Ethanol/O ₂ System Using TiO ₂ Loaded with Au–Ag Bimetallic Alloy Nanoparticles. ACS Catalysis, 2012, 2, 599-603.	5.5	361
72	Platinum Nanoparticles Supported on Anatase Titanium Dioxide as Highly Active Catalysts for Aerobic Oxidation under Visible Light Irradiation. ACS Catalysis, 2012, 2, 1984-1992.	5 . 5	95

#	Article	IF	Citations
73	Colorimetric sensing of cyanide anion in aqueous media with a fluorescein–spiropyran conjugate. Tetrahedron, 2012, 68, 690-696.	1.0	47
74	Highly efficient photocatalytic dehalogenation of organic halides on TiO2 loaded with bimetallic Pd–Pt alloy nanoparticles. Chemical Communications, 2011, 47, 7863.	2.2	67
75	A BODIPY-based fluorescent chemodosimeter for Cu(ii) driven by an oxidative dehydrogenation mechanism. Chemical Communications, 2011, 47, 2673.	2.2	96
76	Visible-Light-Induced Partial Oxidation of Cyclohexane by Cr/Ti/Si Ternary Mixed Oxides with Molecular Oxygen. Journal of Physical Chemistry C, 2011, 115, 19782-19788.	1.5	29
77	Thermoresponsive Copolymer Containing a Coumarin–Spiropyran Conjugate: Reusable Fluorescent Sensor for Cyanide Anion Detection in Water. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4649-4656.	4.0	82
78	Highly sensitive cyanide anion detection with a coumarin–spiropyran conjugate as a fluorescent receptor. Chemical Communications, 2011, 47, 4953.	2.2	188
79	Entropy-Driven Thermal Isomerization of Spiropyran in Viscous Media. Journal of Physical Chemistry A, 2011, 115, 9083-9090.	1.1	22
80	One-pot synthesis of imines from alcohols and amines with TiO2 loading Pt nanoparticles under UV irradiation. Chemical Communications, 2011, 47, 4811.	2.2	113
81	Selective Photocatalytic Oxidation of Alcohols to Aldehydes in Water by TiO ₂ Partially Coated with WO ₃ . Chemistry - A European Journal, 2011, 17, 9816-9824.	1.7	99
82	Multicolor Fluorescence of a Styrylquinoline Dye Tuned by Metal Cations. Chemistry - A European Journal, 2011, 17, 8324-8332.	1.7	39
83	Cu(II)-selective fluorescence of a bis-quinolylimine derivative. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 253-258.	2.0	6
84	A benzoxadiazole–thiourea conjugate as a fluorescent chemodosimeter for Hg(II) in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 154-158.	2.0	26
85	Colorimetric response of spiropyran derivative for anions in aqueous or organic media. Tetrahedron, 2011, 67, 891-897.	1.0	35
86	Rapid colorimetric sensing of cyanide anion in aqueous media with a spiropyran derivative containing a dinitrophenolate moiety. Tetrahedron Letters, 2011, 52, 1515-1519.	0.7	41
87	Oneâ€Pot Synthesis of Benzimidazoles by Simultaneous Photocatalytic and Catalytic Reactions on Pt@TiO ₂ Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 1656-1660.	7.2	191
88	Photosensitized isomerization of olefin with benzophenone-conjugated amphiphilic graft copolymers. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 80-86.	2.0	0
89	Fluorescence properties of polyamines bearing two terminal quinoline fragments in water. Tetrahedron, 2010, 66, 5594-5601.	1.0	16
90	Visible light-induced photosensitized decomposition of organic pollutants with polymer nanocapsules encapsulating Fe(bpy)32+ complex. Applied Catalysis B: Environmental, 2010, 93, 292-298.	10.8	11

#	Article	IF	Citations
91	Highly Efficient Methyl Ketone Synthesis with Photoactivated Acetone and Olefins Assisted by Mg(II)-Exchanged Zeolite Y. Journal of Organic Chemistry, 2010, 75, 1450-1457.	1.7	17
92	Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication. Physical Chemistry Chemical Physics, 2010, 12, 13737.	1.3	133
93	Local Viscosity Analysis of Triblock Copolymer Micelle with Cyanine Dyes as a Fluorescent Probe. Langmuir, 2010, 26, 17505-17512.	1.6	48
94	A coumarin–thiourea conjugate as a fluorescent probe for Hg(ii) in aqueous media with a broad pH range 2–12. Organic and Biomolecular Chemistry, 2010, 8, 1310.	1.5	57
95	Selective photooxidation of chlorophenols with molecularly imprinted polymers containing a photosensitizer. New Journal of Chemistry, 2010, 34, 714.	1.4	23
96	Hydrophobic Cr–Si mixed oxides as a catalyst for visible light-induced partial oxidation of cyclohexane. New Journal of Chemistry, 2010, 34, 2841.	1.4	18
97	Effect of substrate polarity on photocatalytic activity of titanium dioxide particles embedded in mesoporous silica. Journal of Catalysis, 2009, 264, 175-182.	3.1	27
98	A BODIPY–indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Letters, 2009, 50, 4293-4296.	0.7	66
99	Temperature- and pH-responsive photosensitization activity of polymeric sensitizers based on poly-N-isopropylacrylamide. Polymer, 2009, 50, 5758-5764.	1.8	2
100	Effects of poly-N-isopropylacrylamide on fluorescence properties of CdS/Cd(OH)2 nanoparticles in water. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 51-56.	2.0	4
101	Effects of alkyl chain length on Cu(II)-selective green fluorescence of rhodamine–diacetic acid conjugates. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 215-220.	2.0	16
102	BODIPY-Conjugated Thermoresponsive Copolymer as a Fluorescent Thermometer Based on Polymer Microviscosity. Langmuir, 2009, 25, 13176-13182.	1.6	90
103	Spiropyran as a Selective, Sensitive, and Reproducible Cyanide Anion Receptor. Organic Letters, 2009, 11, 3482-3485.	2.4	144
104	Spiropyran-Conjugated Thermoresponsive Copolymer as a Colorimetric Thermometer with Linear and Reversible Color Change. Organic Letters, 2009, 11, 1571-1574.	2.4	102
105	Indole-azadiene conjugate as a colorimetric and fluorometric probe for selective fluoride ion sensing. Organic and Biomolecular Chemistry, 2009, 7, 2072.	1.5	50
106	A Fluorescent Molecular Switch Driven by the Input Sequence of Metal Cations: An Azamacrocyclic Ligand Containing Bipolar Anthracene Fragments. Chemistry - A European Journal, 2008, 14, 259-271.	1.7	28
107	Effects of proton and metal cations on the fluorescence properties of anthracene bearing macrocyclic polyether and polyamine receptors. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 267-276.	2.0	11
108	Rhodamine-conjugated acrylamide polymers exhibiting selective fluorescence enhancement at specific temperature ranges. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 432-437.	2.0	29

#	Article	IF	Citations
109	Selective organic transformations on titanium oxide-based photocatalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9, 157-170.	5.6	315
110	Fe(III)- and Hg(II)-selective dual channel fluorescence of a rhodamine–azacrown ether conjugate. Tetrahedron Letters, 2008, 49, 4178-4181.	0.7	66
111	Selective Photocatalytic Transformations on Microporous Titanosilicate ETS-10 Driven by Size and Polarity of Molecules. Langmuir, 2008, 24, 12658-12663.	1.6	36
112	A Rhodamineâ^'Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II). Journal of Organic Chemistry, 2008, 73, 8571-8574.	1.7	251
113	Temperature-Controlled Photosensitization Properties of Benzophenone-Conjugated Thermoresponsive Copolymers. Journal of Physical Chemistry B, 2008, 112, 13238-13244.	1.2	11
114	A Hemicyanine-Conjugated Copolymer as a Highly Sensitive Fluorescent Thermometer. Langmuir, 2008, 24, 4273-4279.	1.6	107
115	Highly Efficient Methyl Ketone Synthesis by Water-Assisted Câ^'C Coupling between Olefins and Photoactivated Acetone. Organic Letters, 2008, 10, 3117-3120.	2.4	24
116	Temperature-Controlled Photooxygenation with Polymer Nanocapsules Encapsulating an Organic Photosensitizer. Langmuir, 2008, 24, 9832-9836.	1.6	14
117	Effects of Metal Cation Coordination on Fluorescence Properties of a Diethylenetriamine Bearing Two End Pyrene Fragments. Journal of Physical Chemistry B, 2007, 111, 8812-8822.	1.2	31
118	Temperature-controlled changeable oxygenation selectivity by singlet oxygen with a polymeric photosensitizer. Chemical Communications, 2007, , 1846.	2.2	20
119	Hg(II)-Selective Excimer Emission of a Bisnaphthyl Azadiene Derivative. Organic Letters, 2007, 9, 3125-3128.	2.4	52
120	Solvent-Driven Multiply Configurable On/Off Fluorescent Indicator of the pH Window:Â A Diethylenetriamine Bearing Two End Pyrene Fragments. Journal of Physical Chemistry B, 2007, 111, 5090-5100.	1.2	34
121	Rhodamine-Based Fluorescent Thermometer Exhibiting Selective Emission Enhancement at a Specific Temperature Range. Organic Letters, 2007, 9, 3921-3924.	2.4	142
122	A new rhodamine-based fluorescent chemosensor for transition metal cations synthesized by one-step facile condensation. Tetrahedron Letters, 2007, 48, 5455-5459.	0.7	130
123	Temperature-driven on/off fluorescent indicator of pH window: an anthracene-conjugated thermoresponsive polymer. Tetrahedron Letters, 2007, 48, 6660-6664.	0.7	25
124	A quinoline–polyamine conjugate as a fluorescent chemosensor for quantitative detection of Zn(II) in water. Tetrahedron Letters, 2007, 48, 7769-7773.	0.7	46
125	Unmodified fluorescein as a fluorescent chemosensor for fluoride ion detection. Tetrahedron Letters, 2007, 48, 8803-8806.	0.7	30
126	Sensitized luminescence of Eu and Tb macrocyclic complexes bearing benzophenone antennae. Journal of Luminescence, 2007, 126, 68-76.	1.5	22

#	Article	IF	CITATIONS
127	Sensitized luminescence properties of dinuclear lanthanide macrocyclic complexes bearing a benzophenone antenna. Journal of Luminescence, 2007, 127, 623-632.	1.5	14
128	Cu(II)-Selective Green Fluorescence of a Rhodamineâ^'Diacetic Acid Conjugate. Organic Letters, 2007, 9, 5039-5042.	2.4	335
129	A Triethylenetetramine Bearing Anthracene and Benzophenone as a Fluorescent Molecular Logic Gate with Eitherâ^'Or Switchable Dual Logic Functions. Journal of Physical Chemistry B, 2006, 110, 21596-21602.	1.2	34
130	Visible light-induced highly selective transformation of olefin to ketone by 2,4,6-triphenylpyrylium cation encapsulated within zeolite Y. Chemical Communications, 2006, , 773.	2.2	18
131	Temperature-Driven Oxygenation Rate Control by Polymeric Photosensitizer. Journal of the American Chemical Society, 2006, 128, 8751-8753.	6.6	41
132	pH- and H2O-Driven Triple-Mode Pyrene Fluorescence. Organic Letters, 2006, 8, 3841-3844.	2.4	79
133	Visible Light-Induced Partial Oxidation of Olefins on Cr-Containing Silica with Molecular Oxygen. Journal of Physical Chemistry B, 2006, 110, 6257-6263.	1.2	31
134	Ti-Containing Mesoporous Organosilica as a Photocatalyst for Selective Olefin Epoxidation. Journal of Physical Chemistry B, 2006, 110, 17898-17905.	1.2	46
135	Vanadium-Containing Mesoporous Silica of High Photocatalytic Activity and Stability Even in Water. Journal of Physical Chemistry B, 2006, 110, 6587-6594.	1.2	27
136	Sulfonium Salts Obtained by Desulfurization of Light Oils as an Initiator for Cationic Photopolymerization. Energy & Ene	2.5	0
137	Adsorption-Driven Photocatalytic Activity of Mesoporous Titanium Dioxide. Journal of the American Chemical Society, 2005, 127, 12820-12822.	6.6	259
138	A fluorescent chemosensor for wide-range pH detection. Chemical Communications, 2005, , 5313.	2.2	51
139	A Molecular Switch with pH-Controlled Absolutely Switchable Dual-Mode Fluorescence. Organic Letters, 2005, 7, 2611-2614.	2.4	94
140	Acetonitrile-assisted highly selective photocatalytic epoxidation of olefins on Ti-containing silica with molecular oxygen. Chemical Communications, 2005, , 5977.	2.2	47
141	A fluorescent molecular logic gate with multiply-configurable dual outputs. Chemical Communications, 2005, , 5316.	2.2	81
142	Visible light-induced selective oxidation of cyclohexane to cyclohexanone on Cr–Si binary oxide with molecular oxygen. Chemical Communications, 2005, , 4569.	2.2	46
143	Photosensitized Oxygenation of Sulfides within an Amphiphilic Dendrimer Containing a Benzophenone Core. Journal of Physical Chemistry B, 2005, 109, 8580-8586.	1.2	27
144	Fluorometric Detection of pH and Metal Cations by 1,4,7,10-Tetraazacyclododecane (Cyclen) Bearing Two Anthrylmethyl Groups. Industrial & Engineering Chemistry Research, 2005, 44, 847-851.	1.8	14

#	Article	IF	CITATIONS
145	Bis-azamacrocyclic Anthracene as a Fluorescent Chemosensor for Cations in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 19139-19147.	1.2	37
146	Titanosilicate Molecular Sieve for Size-Screening Photocatalytic Conversion. Journal of the American Chemical Society, 2005, 127, 8304-8306.	6.6	70
147	Transmethylation of olefin via S-methylsulfonium salts obtained by desulfurization of light oil. Journal of Molecular Catalysis A, 2004, 212, 115-119.	4.8	2
148	Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquidâ^'Liquid Extraction. Energy & Extraction. Energy & Extraction. Energy & Extraction. Energy & Extraction.	2.5	62
149	Heterogeneous Fluorometric Detection of pH and Metal Cations by Amphiphilic Zeolite Modified with Anthracene-Substituted Azamacrocycle. Industrial & Engineering Chemistry Research, 2004, 43, 6064-6069.	1.8	5
150	Vanadosilicate Molecular Sieve as a Catalyst for Oxidative Desulfurization of Light Oil. Industrial & Light Research, 2003, 42, 6034-6039.	1.8	92
151	Photochemical Production of Biphenyls from Oxidized Sulfur Compounds Obtained by Oxidative Desulfurization of Light Oils. Energy & Samp; Fuels, 2003, 17, 95-100.	2.5	15
152	Desulfurization Process for Light Oil Based on Chemical Adsorption of Sulfur Compounds on Polymer-Supported Imidation Agent Journal of Chemical Engineering of Japan, 2003, 36, 1528-1531.	0.3	3
153	S-Methylsulfonium Salts Obtained by Desulfurization of Vacuum Gas Oil and Catalytic-Cracked Gasoline as Thermal Latent Polymerization Initiator Journal of Chemical Engineering of Japan, 2003, 36, 343-347.	0.3	2
154	Polymer-Supported Sulfonium Salts Obtained by Desulfurization of Light Oil as Novel Phase Transfer Catalyst Journal of Chemical Engineering of Japan, 2003, 36, 220-224.	0.3	0
155	Separation of Transition Metals Using Inorganic Adsorbents Modified with Chelating Ligands. Industrial & Engineering Chemistry Research, 2002, 41, 5065-5070.	1.8	57
156	A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 2. Catalytic-Cracked Gasoline. Industrial & Engineering Chemistry Research, 2001, 40, 1225-1233.	1.8	27
157	A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 5. Denitrogenation Reactivity of Basic and Neutral Nitrogen Compounds. Industrial & Desire Compounds.	1.8	13
158	A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 4. Desulfurization and Simultaneous Denitrogenation of Vacuum Gas Oil. Industrial & Desulfurization Chemistry Research, 2001, 40, 3398-3405.	1.8	12
159	A novel methodology towards deep desulfurization of light oil effected by sulfimides formation. Chemical Communications, 2001, , 1256-1257.	2.2	19
160	A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 1. Light Oil Feedstocks. Industrial & Engineering Chemistry Research, 2001, 40, 1213-1224.	1.8	69
161	Photochemical Desulfurization of Light Oils Using Oil/Hydrogen Peroxide Aqueous Solution Extraction System: Application for High Sulfur Content Straight-Run Light Gas Oil and Aromatic Rich Light Cycle Oil Journal of Chemical Engineering of Japan, 1999, 32, 158-161.	0.3	18
162	Visible Light-Induced Deep Desulfurization Process for Light Oils by Photochemical Electron-Transfer Oxidation in an Organic Two-Phase Extraction System. Industrial & Engineering Chemistry Research, 1999, 38, 3310-3318.	1.8	36

#	Article	IF	CITATIONS
163	Identification of Desulfurization Products in the Photochemical Desulfurization Process for Benzothiophenes and Dibenzothiophenes from Light Oil Using an Organic Two-Phase Extraction System. Industrial & Engineering Chemistry Research, 1999, 38, 3300-3309.	1.8	39
164	A Deep Desulfurization Process for Light Oil by Photosensitized Oxidation Using a Triplet Photosensitizer and Hydrogen Peroxide in an Oil/Water Two-Phase Liquidâ^'Liquid Extraction System. Industrial & Lamp; Engineering Chemistry Research, 1999, 38, 1589-1595.	1.8	45
165	Visible light-induced desulfurization technique for light oil. Chemical Communications, 1998, , 2601-2602.	2.2	47
166	Effect of Photosensitizer and Hydrogen Peroxide on Desulfurization of Light Oil by Photochemical Reaction and Liquidâ [^] Liquid Extraction. Industrial & Engineering Chemistry Research, 1997, 36, 530-533.	1.8	51
167	Desulfurization Process for Light Oil by Photochemical Reaction and Liquid-Liquid Extraction: Removal of Benzothiophenes and Alkyl Sulfides Journal of Chemical Engineering of Japan, 1997, 30, 173-175.	0.3	13