
Guangzhi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8048187/publications.pdf Version: 2024-02-01

ΟΠΑΝΟΖΗΙ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale, 2013, 5, 5462.	5.6	193
2	Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomaterialia, 2017, 53, 233-241.	8.3	110
3	Influence of Working Temperature on The Formation of Electrospun Polymer Nanofibers. Nanoscale Research Letters, 2017, 12, 55.	5.7	81
4	Armoring LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode with Reliable Fluorinated Organic–Inorganic Hybrid Interphase Layer toward Durable High Rate Battery. Advanced Functional Materials, 2020, 30, 2000396.	14.9	74
5	Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes. Journal of Power Sources, 2016, 315, 209-217.	7.8	63
6	Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation. Carbon, 2015, 90, 197-206.	10.3	50
7	Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings. Journal of Materials Chemistry A, 2019, 7, 17937-17946.	10.3	50
8	Preparation and CO2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves. Journal of Materials Science and Technology, 2019, 35, 875-884.	10.7	49
9	Preparation and CO ₂ adsorption properties of porous carbon from camphor leaves by hydrothermal carbonization and sequential potassium hydroxide activation. RSC Advances, 2017, 7, 4152-4160.	3.6	48
10	Encapsulation of linseed oil in graphene oxide shells for preparation of self-healing composite coatings. Progress in Organic Coatings, 2019, 129, 285-291.	3.9	45
11	Functionalized graphene/polymer composite coatings for autonomous early-warning of steel corrosion. Composites Communications, 2018, 9, 6-10.	6.3	41
12	Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture. Applied Surface Science, 2013, 277, 47-52.	6.1	33
13	Homogenous and highly isotropic graphite produced from mesocarbon microbeads. Carbon, 2015, 94, 18-26.	10.3	31
14	Coaxial electrospun fibres with graphene oxide/PAN shells for self-healing waterborne polyurethane coatings. Progress in Organic Coatings, 2019, 131, 227-231.	3.9	31
15	The use of asphalt emulsions as a binder for the preparation of polycrystalline graphite. Carbon, 2013, 58, 238-241.	10.3	26
16	Direct Ink Writing of Moldable Electrochemical Energy Storage Devices: Ongoing Progress, Challenges, and Prospects. Advanced Engineering Materials, 2021, 23, 2100068.	3.5	26
17	Hollow carbon nanospheres prepared by carbonizing polymethylmethacrylate/polyacrylonitrile core/shell polymer particles. New Carbon Materials, 2008, 23, 205-208.	6.1	24
18	Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. ACS Nano, 2017, 11, 1257-1263.	14.6	23

#	Article	IF	CITATIONS
19	Highly sensitive determination of cadmium and lead in whole blood by electrothermal vaporization-atmospheric pressure glow discharge atomic emission spectrometry. Analytica Chimica Acta, 2021, 1162, 338495.	5.4	22
20	Bifunctional Fluorinated Separator Enabling Polysulfide Trapping and Li Deposition for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 11920-11929.	8.0	20
21	Carbon foams from polyacrylonitrile-borneol films prepared using coaxial electrohydrodynamic atomization. Carbon, 2013, 53, 231-236.	10.3	17
22	Coke texture, reactivity and tumbler strength after reaction under simulated blast furnace conditions. Fuel, 2019, 251, 218-223.	6.4	17
23	The comparison of macroporous ceramics fabricated through the protein direct foaming and sponge replica methods. Journal of Porous Materials, 2012, 19, 761-766.	2.6	16
24	Wettability of natural microcrystalline graphite filler with pitch in isotropic graphite preparation. Fuel, 2016, 180, 743-748.	6.4	16
25	Enhanced corrosion resistance and weathering resistance of waterborne epoxy coatings with polyetheramine-functionalized graphene oxide. Journal of Coatings Technology Research, 2020, 17, 171-180.	2.5	16
26	Facile self-templating preparation of polyacrylonitrile-derived hierarchical porous carbon nanospheres for high-performance supercapacitors. RSC Advances, 2016, 6, 43748-43754.	3.6	14
27	Preparation of nanoporous carbons with hierarchical pore structure for CO2 capture. New Carbon Materials, 2013, 28, 55-60.	6.1	12
28	Catalyst-free synthesis of multi-walled carbon nanotubes from carbon spheres and its implications for the formation mechanism. Carbon, 2013, 53, 137-144.	10.3	12
29	Emulsifierâ€free emulsion polymerization of acrylonitrile in the presence of poly(methyl methacrylate) seed particles: Influence of the addition mode on the surface morphology. Journal of Applied Polymer Science, 2009, 112, 410-415.	2.6	11
30	Fabrication of ordered mesoporous carbons anchored with MnO nanoparticles through dual-templating approach for supercapacitors. Ceramics International, 2015, 41, 9980-9987.	4.8	11
31	Preparation of Nitrogen-Doped Cellulose-Based Porous Carbon and Its Carbon Dioxide Adsorption Properties. ACS Omega, 2021, 6, 24814-24825.	3.5	11
32	Synthesis of carbon nanofiber/carbon-foam composite for catalyst support in gas-phase catalytic reactions. New Carbon Materials, 2011, 26, 341-346.	6.1	10
33	Thermal Properties of Poly(vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) (PVVH) Polymer and Its Application in ZnO Based Nanogenerators. Chinese Physics Letters, 2011, 28, 016501.	3.3	10
34	MnO nanoparticles with textured porosity supported on mesoporous carbons. Ceramics International, 2013, 39, 7773-7778.	4.8	10
35	Interface enhancement of carbon nanotube/mesocarbon microbead isotropic composites. Composites Part A: Applied Science and Manufacturing, 2014, 56, 44-50.	7.6	10
36	Aqueous Organic Zinc-Ion Hybrid Supercapacitors Prepared by 3D Vertically Aligned Graphene-Polydopamine Composite Electrode. Nanomaterials, 2022, 12, 386.	4.1	10

Guangzhi Yang

#	Article	IF	CITATIONS
37	Preparation of mesoporous carbon microsphere/activated carbon composite for electric double-layer capacitors. New Carbon Materials, 2011, 26, 237-240.	6.1	9
38	Rational construction of well-defined hollow double shell SnO2/mesoporous carbon spheres heterostructure for supercapacitors. Journal of Alloys and Compounds, 2021, 873, 159810.	5.5	9
39	Preparation and dispersity of carbon nanospheres by carbonizing polyacrylonitrile microspheres. RSC Advances, 2017, 7, 16341-16347.	3.6	7
40	Synthesis of Graphene with Microwave Irradiation in Liquid Phase. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 769-774.	1.3	7
41	Preparation and Electrochemical Performance of Three-Dimensional Vertically Aligned Graphene by Unidirectional Freezing Method. Molecules, 2022, 27, 376.	3.8	7
42	Raman Study of the Relationship between Microstructure and Physical Properties of Isotropic Graphite. Advanced Materials Research, 2012, 487, 860-863.	0.3	5
43	An index of fluidity-temperature area for evaluating cohesiveness of coking coal by Gieseler fluidity characterization. Fuel Processing Technology, 2018, 177, 1-5.	7.2	5
44	Zwitterionic graphene oxide modified with two silane molecules for multiple applications. Chemical Physics Letters, 2018, 706, 543-547.	2.6	5
45	Preparation of ordered mesoporous carbons with an intergrown p6mm and cubic Fd3m pore structure using a copolymer as a template. Journal of Colloid and Interface Science, 2013, 401, 161-163.	9.4	4
46	One step synthesis of ordered mesoporous carbons with two-dimensional mesostructure by soft templating method using mixed triblock copolymers. Materials Research Innovations, 2014, 18, 108-111.	2.3	4
47	Synthesis and Electrochemical Performance of SnO ₂ /Graphene Anode Material for Lithium Ion Batteries. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 515-520.	1.3	4
48	Direct fabrication of ordered mesoporous carbons with super-micropore/small mesopore using mixed triblock copolymers. Journal of Colloid and Interface Science, 2014, 413, 154-158.	9.4	3
49	Highly Thermal Conductive Graphite Films Derived from the Graphitization of Chemically Imidized Polyimide Films. Nanomaterials, 2022, 12, 367.	4.1	3
50	Self-catalyzed synthesis of mesoporous carbons with tunable pore size and structure by soft-templating method. Journal of Sol-Gel Science and Technology, 2014, 69, 47-51.	2.4	2
51	Electrocatalytic Performance of Carbon Nanotubes with Different Structure Parameters toward the Oxygen Reduction Reaction. ECS Electrochemistry Letters, 2015, 4, H19-H23.	1.9	2
52	Recent progress on the preparation of three-dimensional vertically aligned graphene and its applications insupercapacitors. Chinese Science Bulletin, 2021, 66, 3617-3630.	0.7	1
53	Preparation and Electrical Properties of Polyacrylonitrile Based Porous Carbon by Different Activation Methods. Molecules, 2021, 26, 3499.	3.8	1
54	Preparation of carbon-coated MnCO3@MnO2 hierarchical hollow nanostructure and their application in supercapacitors. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	1

Guangzhi Yang

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Phenol-Formaldehyde Resin Coated Graphitized Needle Coke. Advanced Materials Research, 0, 347-353, 3365-3369.	0.3	0
56	Synthesis and Characterization of Polyacrylonitrile Microspheres by Soapless Emulsion Polymerization. Advanced Materials Research, 0, 311-313, 571-575.	0.3	0
57	A Simple Method of Evaluating the Thermal Properties of Metallurgical Cokes under High Temperature. Materials, 2021, 14, 5767.	2.9	0
58	Effect Mechanisms of Carbon Nanotubes on the Supercritical Foaming Behaviors and Mechanical Performance of Carbon Foam. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 1020-1024.	1.3	0