List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8047488/publications.pdf Version: 2024-02-01

		34105	28297
113	13,152	52	105
papers	citations	h-index	g-index
133	133	133	11157
all docs	docs citations	times ranked	citing authors

SHAHDACIM TAIRAKHSH

#	Article	IF	CITATIONS
1	Identification of bipotent progenitors that give rise to myogenic and connective tissues in mouse. ELife, 2022, 11, .	6.0	11
2	Pathological features of tissues and cell populations during cancer cachexia. Cell Regeneration, 2022, 11, 15.	2.6	7
3	Dynamics of myogenic differentiation using a novel Myogenin knock-in reporter mouse. Skeletal Muscle, 2021, 11, 5.	4.2	10
4	Longitudinal high-resolution imaging through a flexible intravital imaging window. Science Advances, 2021, 7, .	10.3	25
5	Unexpected contribution of fibroblasts to muscle lineage as a mechanism for limb muscle patterning. Nature Communications, 2021, 12, 3851.	12.8	29
6	Diversity in cranial muscles: Origins and developmental programs. Current Opinion in Cell Biology, 2021, 73, 110-116.	5.4	13
7	Dynamics of Asymmetric and Symmetric Divisions of Muscle Stem Cells InÂVivo and on Artificial Niches. Cell Reports, 2020, 30, 3195-3206.e7.	6.4	42
8	SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development (Cambridge), 2020, 147, .	2.5	6
9	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biology, 2020, 18, e3000902.	5.6	21
10	Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. PLoS Genetics, 2020, 16, e1009022.	3.5	22
11	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
12	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
13	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
14	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
15	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
16	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
17	Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. , 2020, 16, e1009022.		0
18	Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. , 2020, 16, e1009022.		0

#	Article	IF	CITATIONS
19	Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. , 2020, 16, e1009022.		0
20	Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. , 2020, 16, e1009022.		0
21	Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nature Communications, 2019, 10, 4361.	12.8	157
22	High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Molecular Cell, 2019, 74, 609-621.e6.	9.7	271
23	Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers while Inducing Perivascular Cell Features in Muscle Satellite Cells. Stem Cell Reports, 2019, 12, 461-473.	4.8	42
24	Muscle-selective RUNX3 dependence of sensorimotor circuit development. Development (Cambridge), 2019, 146, .	2.5	15
25	An interactive and intuitive visualisation method for X-ray computed tomography data of biological samples in 3D Portable Document Format. Scientific Reports, 2019, 9, 14896.	3.3	13
26	A destabilised metabolic niche provokes loss of a subpopulation of aged muscle stem cells. EMBO Journal, 2019, 38, e103924.	7.8	2
27	A distinct cardiopharyngeal mesoderm genetic hierarchy establishes antero-posterior patterning of esophagus striated muscle. ELife, 2019, 8, .	6.0	20
28	Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm <i>in vitro</i> . Development (Cambridge), 2018, 145, .	2.5	53
29	Small-RNA sequencing identifies dynamic microRNA deregulation during skeletal muscle lineage progression. Scientific Reports, 2018, 8, 4208.	3.3	18
30	Effect of chemical immobilization of SDF-1α into muscle-derived scaffolds on angiogenesis and muscle progenitor recruitment. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e438-e450.	2.7	23
31	Regulation and phylogeny of skeletal muscle regeneration. Developmental Biology, 2018, 433, 200-209.	2.0	149
32	Notchless defines a stage-specific requirement for ribosome biogenesis during lineage progression in adult skeletal myogenesis. Development (Cambridge), 2018, 145, .	2.5	10
33	Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence. Cell Stem Cell, 2018, 23, 859-868.e5.	11.1	87
34	Skeletal muscle stem cells in comfort and stress. Npj Regenerative Medicine, 2018, 3, 24.	5.2	82
35	RhoA and ERK signalling regulate the expression of the myogenic transcription factor Nfix. Development (Cambridge), 2018, 145, .	2.5	13
36	Reciprocal signalling by Notch–Collagen V–CALCR retains muscle stem cells in their niche. Nature, 2018, 557, 714-718.	27.8	203

#	Article	IF	CITATIONS
37	Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle. Frontiers in Physiology, 2018, 9, 515.	2.8	11
38	Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. Journal of Cell Science, 2018, 131, .	2.0	109
39	Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors. Stem Cell Reports, 2018, 10, 1505-1521.	4.8	74
40	Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. ELife, 2018, 7, .	6.0	52
41	Trends in tissue repair and regeneration. Development (Cambridge), 2017, 144, 357-364.	2.5	62
42	Isolation of Muscle Stem Cells from Mouse Skeletal Muscle. Methods in Molecular Biology, 2017, 1556, 23-39.	0.9	19
43	lncRNA-Encoded Polypeptide SPAR(s) with mTORC1 to Regulate Skeletal Muscle Regeneration. Cell Stem Cell, 2017, 20, 428-430.	11.1	35
44	Epigenetic regulation of muscle development. Journal of Muscle Research and Cell Motility, 2017, 38, 31-35.	2.0	14
45	Injury-Induced Senescence Enables InÂVivo Reprogramming in Skeletal Muscle. Cell Stem Cell, 2017, 20, 407-414.e4.	11.1	234
46	Retinoic acid maintains human skeletal muscle progenitor cells in an immature state. Cellular and Molecular Life Sciences, 2017, 74, 1923-1936.	5.4	33
47	Quiescence of human muscle stem cells is favored by culture on natural biopolymeric films. Stem Cell Research and Therapy, 2017, 8, 104.	5.5	22
48	Comparison of multiple transcriptomes exposes unified and divergent features of quiescent and activated skeletal muscle stem cells. Skeletal Muscle, 2017, 7, 28.	4.2	29
49	Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity. PLoS ONE, 2017, 12, e0177516.	2.5	30
50	Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx. ELife, 2017, 6, .	6.0	63
51	Comparative Study of Injury Models for Studying Muscle Regeneration in Mice. PLoS ONE, 2016, 11, e0147198.	2.5	383
52	Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression. Cell Reports, 2016, 14, 2238-2249.	6.4	78
53	Adult Skeletal Muscle Stem Cells. Results and Problems in Cell Differentiation, 2015, 56, 191-213.	0.7	57
54	Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nature Biotechnology, 2015, 33, 962-969.	17.5	339

#	Article	IF	CITATIONS
55	Chromatin signatures at Notchâ€regulated enhancers reveal largeâ€scale changes in H3K56ac upon activation. EMBO Journal, 2015, 34, 1889-1904.	7.8	76
56	A Cranial Mesoderm Origin for Esophagus Striated Muscles. Developmental Cell, 2015, 34, 694-704.	7.0	61
57	Numb is required to prevent p53-dependent senescence following skeletal muscle injury. Nature Communications, 2015, 6, 8528.	12.8	58
58	Intracellular Inactivation of Thyroid Hormone Is a Survival Mechanism for Muscle Stem Cell Proliferation and Lineage Progression. Cell Metabolism, 2014, 20, 1038-1048.	16.2	91
59	Midbody remnant engulfment after cytokinesis abscission in mammalian cells. Journal of Cell Science, 2014, 127, 3840-51.	2.0	93
60	More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Research, 2014, 13, 492-507.	0.7	69
61	Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy. Journal of Experimental Medicine, 2014, 211, 2617-2633.	8.5	34
62	Variations in the Efficiency of Lineage Marking and Ablation Confound Distinctions between Myogenic Cell Populations. Developmental Cell, 2014, 31, 654-667.	7.0	47
63	Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells. Cell Reports, 2014, 7, 961-970.	6.4	57
64	Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Developmental Biology, 2014, 14, 2.	2.1	99
65	Molecular and Cellular Regulation of Skeletal Myogenesis. Current Topics in Developmental Biology, 2014, 110, 1-73.	2.2	155
66	Ballroom Dancing with Stem Cells: Placement and Displacement in the Intestinal Crypt. Cell Stem Cell, 2014, 14, 271-273.	11.1	5
67	Sorting DNA with asymmetry: a new player in gene regulation?. Chromosome Research, 2013, 21, 225-242.	2.2	10
68	Embryonic founders of adult muscle stem cells are primed by the determination gene Mrf4. Developmental Biology, 2013, 381, 241-255.	2.0	46
69	DNA asymmetry and cell fate regulation in stem cells. Seminars in Cell and Developmental Biology, 2013, 24, 627-642.	5.0	21
70	Losing stem cells in the aged skeletal muscle niche. Cell Research, 2013, 23, 455-457.	12.0	9
71	Dynamic binding of RBPJ is determined by Notch signaling status. Genes and Development, 2013, 27, 1059-1071.	5.9	218
72	Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. Journal of Cell Science, 2012, 125, 1738-49.	2.0	72

#	Article	IF	CITATIONS
73	Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3231-40.	7.1	48
74	Biased DNA Segregation and Cardiac Stem Cell Therapies. Circulation Research, 2012, 111, 827-830.	4.5	5
75	Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development (Cambridge), 2012, 139, 4536-4548.	2.5	112
76	Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration. Journal of Cell Biology, 2012, 198, 815-832.	5.2	96
77	A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division. Cell, 2012, 148, 112-125.	28.9	421
78	A Critical Requirement for Notch Signaling in Maintenance of the Quiescent Skeletal Muscle Stem Cell State. Stem Cells, 2012, 30, 243-252.	3.2	402
79	Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nature Communications, 2012, 3, 903.	12.8	115
80	An eye on the head: the development and evolution of craniofacial muscles. Development (Cambridge), 2011, 138, 2401-2415.	2.5	177
81	Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development (Cambridge), 2011, 138, 3647-3656.	2.5	734
82	The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development (Cambridge), 2010, 137, 2961-2971.	2.5	102
83	Developing bones are differentially affected by compromised skeletal muscle formation. Bone, 2010, 46, 1275-1285.	2.9	118
84	Skeletal muscle as a paradigm for regenerative biology and medicine. Regenerative Medicine, 2009, 4, 293-319.	1.7	73
85	Numb Promotes an Increase in Skeletal Muscle Progenitor Cells in the Embryonic Somite. Stem Cells, 2009, 27, 2769-2780.	3.2	41
86	Skeletal muscle stem cells in developmental versus regenerative myogenesis. Journal of Internal Medicine, 2009, 266, 372-389.	6.0	255
87	Biased segregation of DNA and centrosomes — moving together or drifting apart?. Nature Reviews Molecular Cell Biology, 2009, 10, 804-810.	37.0	52
88	Expression pattern and role of Galectin1 during early mouse myogenesis. Development Growth and Differentiation, 2009, 51, 607-615.	1.5	10
89	Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates. Developmental Cell, 2009, 16, 810-821.	7.0	323
90	Asymmetric Cell Divisions and Asymmetric Cell Fates. Annual Review of Cell and Developmental Biology, 2009, 25, 671-699.	9.4	53

#	Article	IF	CITATIONS
91	Template DNA-Strand Co-Segregation and Asymmetric Cell Division in Skeletal Muscle Stem Cells. Methods in Molecular Biology, 2009, 482, 295-317.	0.9	29
92	Stem cell identity and template DNA strand segregation. Current Opinion in Cell Biology, 2008, 20, 716-722.	5.4	26
93	Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners. Molecular Biology of the Cell, 2007, 18, 1397-1409.	2.1	575
94	Skeletal muscle stem cell birth and properties. Seminars in Cell and Developmental Biology, 2007, 18, 870-882.	5.0	112
95	Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Developmental Biology, 2007, 304, 633-651.	2.0	126
96	A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Developmental Biology, 2007, 312, 13-28.	2.0	188
97	Oriented Cell Divisions and Muscle Satellite Cell Heterogeneity. Cell, 2007, 129, 859-861.	28.9	31
98	Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. Journal of Cell Biology, 2006, 172, 91-102.	5.2	599
99	Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biology, 2006, 8, 677-682.	10.3	430
100	Skeletal muscle stem and progenitor cells: Reconciling genetics and lineage. Experimental Cell Research, 2005, 306, 364-372.	2.6	66
101	Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes and Development, 2005, 19, 1426-1431.	5.9	442
102	Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature, 2004, 431, 466-471.	27.8	536
103	Analysis ofMlc-lacZ Met mutants highlights the essential function of Met for migratory precursors of hypaxial muscles and reveals a role for Met in the development of hyoid arch-derived facial muscles. Developmental Dynamics, 2004, 231, 582-591.	1.8	44
104	Myf5 and MyoD activation define independent myogenic compartments during embryonic development. Developmental Biology, 2003, 258, 307-318.	2.0	125
105	Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle. Current Opinion in Genetics and Development, 2003, 13, 413-422.	3.3	68
106	Kinetics of Myoblast Proliferation Show That Resident Satellite Cells Are Competent to Fully Regenerate Skeletal Muscle Fibers. Experimental Cell Research, 2002, 281, 39-49.	2.6	255
107	Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells. Journal of Cell Biology, 2000, 151, 1221-1234.	5.2	795
108	6 The Birth of Muscle Progenitor Cells in the Mouse: Spatiotemporal Considerations. Current Topics in Developmental Biology, 1999, 48, 225-268.	2.2	169

#	Article	IF	CITATIONS
109	Increased in situ hybridization sensitivity using non-radioactive probes after staining for β-galactosidase activity. Technical Tips Online, 1998, 3, 147-149.	0.2	5
110	Establishing myogenic identity during somitogenesis. Current Opinion in Genetics and Development, 1997, 7, 634-641.	3.3	102
111	Redefining the Genetic Hierarchies Controlling Skeletal Myogenesis: Pax-3 and Myf-5 Act Upstream of MyoD. Cell, 1997, 89, 127-138.	28.9	755
112	How is myogenesis initiated in the embryo?. Trends in Genetics, 1996, 12, 218-223.	6.7	221
113	Stem cell: what's in a name?. Nature Reports Stem Cells, 0, , .	0.0	25