
Victor C Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8047457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A unified model for transient subglacial water pressure and basal sliding. Journal of Glaciology, 2022, 68, 390-400.	2.2	8
2	Parsimonious Velocity Inversion Applied to the Los Angeles Basin, CA. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	4
3	Seismic Mapping of Subglacial Hydrology Reveals Previously Undetected Pressurization Event. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	1
4	A nonlinear model for resolving the temperature bias of branched glycerol dialkyl glycerol tetraether (brGDGT) temperature proxies. Geochimica Et Cosmochimica Acta, 2022, 327, 158-169.	3.9	5
5	Rayleigh-wave ellipticity in weakly heterogeneous layered media. Geophysical Journal International, 2021, 228, 1313-1323.	2.4	0
6	Impact Versus Frictional Earthquake Models for Highâ€Frequency Radiation in Complex Fault Zones. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022313.	3.4	11
7	A Linear Inversion Approach to Measuring the Composition and Directionality of the Seismic Noise Field. Remote Sensing, 2021, 13, 3097.	4.0	2
8	Earthquake Source Complexity Controls the Frequency Dependence of Nearâ€Source Radiation Patterns. Geophysical Research Letters, 2021, 48, e2021GL095022.	4.0	14
9	Modelling <i>P</i> waves in seismic noise correlations: advancing fault monitoring using train traffic sources. Geophysical Journal International, 2021, 228, 1556-1567.	2.4	9
10	Fault Interactions Enhance Highâ€Frequency Earthquake Radiation. Geophysical Research Letters, 2021, 48, e2021GL095271.	4.0	15
11	Introduction to the Special Issue on Mars Seismology. Bulletin of the Seismological Society of America, 2021, 111, 2883-2888.	2.3	1
12	Perturbational and nonperturbational inversion of Love-wave velocities. Geophysics, 2020, 85, F19-F26.	2.6	9
13	Geometric and level set tomography using ensemble Kalman inversion. Geophysical Journal International, 2020, 220, 967-980.	2.4	19
14	A Physical Model for Volcanic Eruption Tremor. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018980.	3.4	6
15	Measuring Basal Force Fluctuations of Debris Flows Using Seismic Recordings and Empirical Green's Functions. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005590.	2.8	24
16	Evidence for Fluid Migration During the 2016 Meinong, Taiwan, Aftershock Sequence. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019994.	3.4	8
17	Elastic Impact Consequences for Highâ€Frequency Earthquake Ground Motion. Geophysical Research Letters, 2020, 47, e2019GL086302.	4.0	21
18	Did Oldham Discover the Core After All? Handling Imprecise Historical Data with Hierarchical Bayesian Model Selection Methods. Seismological Research Letters, 2020, 91, 1377-1383.	1.9	9

#	Article	IF	CITATIONS
19	Extension of the Basin Rayleigh-Wave Amplification Theory to Include Basin-Edge Effects. Bulletin of the Seismological Society of America, 2020, 110, 1305-1322.	2.3	16
20	Time-Dependent Stresses From Fluid Extraction and Diffusion With Applications to Induced Seismicity. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	3
21	Bulk Structure of the Crust and Upper Mantle beneath Alaska from an Approximate Rayleigh-Wave Dispersion Formula. Seismological Research Letters, 2020, 91, 3064-3075.	1.9	7
22	Validation of a fast semi-analytic method for surface-wave propagation in layered media. Geophysical Journal International, 2019, 219, 1405-1420.	2.4	2
23	A physical model of the highâ€frequency seismic signal generated by debris flows. Earth Surface Processes and Landforms, 2019, 44, 2529-2543.	2.5	51
24	Coherenceâ€Based Approaches for Estimating the Composition of the Seismic Wavefield. Journal of Geophysical Research: Solid Earth, 2019, 124, 2941-2956.	3.4	9
25	Theoretical Foundations of Noise Interferometry. , 2019, , 109-143.		5
26	Frequencyâ€Dependent <i>P</i> Wave Polarization and Its Subwavelength Nearâ€Surface Depth Sensitivity. Geophysical Research Letters, 2019, 46, 14377-14384.	4.0	15
27	Direct Observations of Surfaceâ€Wave Eigenfunctions at the Homestake 3D Array. Bulletin of the Seismological Society of America, 2019, 109, 1194-1202.	2.3	5
28	Particle transport mechanics and induced seismic noise in steep flume experiments with accelerometerâ€embedded tracers. Earth Surface Processes and Landforms, 2019, 44, 219-241.	2.5	44
29	Expected Seismicity and the Seismic Noise Environment of Europa. Journal of Geophysical Research E: Planets, 2018, 123, 163-179.	3.6	38
30	Vital Signs: Seismology of Icy Ocean Worlds. Astrobiology, 2018, 18, 37-53.	3.0	31
31	A 3D Broadband Seismometer Array Experiment at the Homestake Mine. Seismological Research Letters, 2018, 89, 2420-2429.	1.9	14
32	A Simple Model for Deglacial Meltwater Pulses. Geophysical Research Letters, 2018, 45, 11,742.	4.0	1
33	The Seismic Signature of Debris Flows: Flow Mechanics and Early Warning at Montecito, California. Geophysical Research Letters, 2018, 45, 5528-5535.	4.0	69
34	A simple physics-based improvement to the positive degree day model. Journal of Glaciology, 2018, 64, 661-668.	2.2	4
35	Observations and Modeling of Longâ€Period Groundâ€Motion Amplification Across Northeast China. Geophysical Research Letters, 2018, 45, 5968-5976.	4.0	4
36	Seismic array constraints on reach-scale bedload transport. Geology, 2017, 45, 299-302.	4.4	36

#	Article	IF	CITATIONS
37	Perturbational and nonperturbational inversion of Rayleigh-wave velocities. Geophysics, 2017, 82, F15-F28.	2.6	56
38	Earthquake ground motion amplification for surface waves. Geophysical Research Letters, 2017, 44, 121-127.	4.0	59
39	Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?. Journal of Seismology, 2017, 21, 1613-1621.	1.3	7
40	Toward automated directivity estimates in earthquake moment tensor inversion. Geophysical Journal International, 2017, 211, 1062-1076.	2.4	8
41	Explaining extreme ground motion in Osaka basin during the 2011 Tohoku earthquake. Geophysical Research Letters, 2017, 44, 7239-7244.	4.0	14
42	Amplification and Attenuation Across USArray Using Ambient Noise Wavefront Tracking. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,086.	3.4	27
43	Seismologically Observed Spatiotemporal Drainage Activity at Moulins. Journal of Geophysical Research: Solid Earth, 2017, 122, 9095-9108.	3.4	11
44	Tidal modulation of ice shelf buttressing stresses. Annals of Glaciology, 2017, 58, 12-20.	1.4	25
45	Rayleighâ€Wave H/V via Noise Cross Correlation in Southern California. Bulletin of the Seismological Society of America, 2017, 107, 2021-2027.	2.3	15
46	Offshore Southern California lithospheric velocity structure from noise crossâ€correlation functions. Journal of Geophysical Research: Solid Earth, 2016, 121, 3415-3427.	3.4	24
47	Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array. Geophysical Journal International, 2016, 206, 757-773.	2.4	22
48	Subseasonal changes observed in subglacial channel pressure, size, and sediment transport. Geophysical Research Letters, 2016, 43, 3786-3794.	4.0	68
49	Marine ice-sheet profiles and stability under Coulomb basal conditions. Journal of Glaciology, 2015, 61, 205-215.	2.2	117
50	Highâ€resolution probing of inner core structure with seismic interferometry. Geophysical Research Letters, 2015, 42, 10,622.	4.0	27
51	Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA. Geophysical Research Letters, 2015, 42, 1360-1367.	4.0	51
52	A model for subglacial flooding through a preexisting hydrological network during the rapid drainage of supraglacial lakes. Journal of Geophysical Research F: Earth Surface, 2015, 120, 580-603.	2.8	7
53	Time Scale for Rapid Draining of a Surficial Lake Into the Greenland Ice Sheet. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	2.2	4
54	Predicting short-period, wind-wave-generated seismic noise in coastal regions. Earth and Planetary Science Letters, 2015, 426, 280-292.	4.4	24

#	Article	IF	CITATIONS
55	Nonperturbational surface-wave inversion: A Dix-type relation for surface waves. Geophysics, 2015, 80, EN167-EN177.	2.6	35
56	An improved model for tidally modulated grounding-line migration. Journal of Glaciology, 2015, 61, 216-222.	2.2	26
57	Modeling of subglacial hydrological development following rapid supraglacial lake drainage. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1127-1147.	2.8	60
58	The Yellowstone magmatic system from the mantle plume to the upper crust. Science, 2015, 348, 773-776.	12.6	220
59	Seismologically determined bedload flux during the typhoon season. Scientific Reports, 2015, 5, 8261.	3.3	26
60	Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams. Cryosphere, 2014, 8, 2007-2029.	3.9	27
61	Green's Functions for Surface Waves in a Generic Velocity Structure. Bulletin of the Seismological Society of America, 2014, 104, 2573-2578.	2.3	21
62	3-D crustal structure of the western United States: application of Rayleigh-wave ellipticity extracted from noise cross-correlations. Geophysical Journal International, 2014, 198, 656-670.	2.4	98
63	Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth and Planetary Science Letters, 2014, 385, 89-96.	4.4	96
64	Ambient noise correlation on the Amery Ice Shelf, East Antarctica. Geophysical Journal International, 2014, 196, 1796-1802.	2.4	35
65	Cooling magma model for deep volcanic longâ€period earthquakes. Journal of Geophysical Research: Solid Earth, 2014, 119, 8442-8456.	3.4	42
66	A physical model for seismic noise generation by turbulent flow in rivers. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2209-2238.	2.8	110
67	Seismic interferometry with antipodal station pairs. Geophysical Research Letters, 2013, 40, 4609-4613.	4.0	51
68	Extracting seismic core phases with array interferometry. Geophysical Research Letters, 2013, 40, 1049-1053.	4.0	99
69	Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth and Planetary Science Letters, 2013, 374, 92-100.	4.4	78
70	Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophysical Journal International, 2013, 194, 1574-1581.	2.4	97
71	Locating a scatterer in the active volcanic area of Southern Peru from ambient noise cross-correlation. Geophysical Journal International, 2013, 192, 1332-1341.	2.4	22
72	Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon. Geophysical Research Letters, 2013, 40, 4858-4863.	4.0	90

#	Article	IF	CITATIONS
73	Estimating the effect of Earth elasticity and variable water density on tsunami speeds. Geophysical Research Letters, 2013, 40, 492-496.	4.0	81
74	Modeling Turbulent Hydraulic Fracture Near a Free Surface. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	2.2	27
75	Earthquake in a Maze: Compressional Rupture Branching During the 2012 <i>M</i> _w 8.6 Sumatra Earthquake. Science, 2012, 337, 724-726.	12.6	228
76	The 2012 Sumatra great earthquake sequence. Earth and Planetary Science Letters, 2012, 351-352, 247-257.	4.4	99
77	A physical model for seismic noise generation from sediment transport in rivers. Geophysical Research Letters, 2012, 39, .	4.0	141
78	Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: Constraining velocity and density structure in the upper crust. Geophysical Research Letters, 2012, 39, .	4.0	95
79	The local amplification of surface waves: A new observable to constrain elastic velocities, density, and anelastic attenuation. Journal of Geophysical Research, 2012, 117, .	3.3	52
80	Anomalously steep dips of earthquakes in the 2011 Tohoku-Oki source region and possible explanations. Earth and Planetary Science Letters, 2012, 353-354, 121-133.	4.4	39
81	A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. Journal of Geophysical Research, 2011, 116, .	3.3	105
82	Constraints on the long-period moment-dip tradeoff for the Tohoku earthquake. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	23
83	Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	14
84	Quantifying the influence of sea ice on ocean microseism using observations from the Bering Sea, Alaska. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	31
85	Understanding the amplitudes of noise correlation measurements. Journal of Geophysical Research, 2011, 116, .	3.3	95
86	An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results. Geophysical Journal International, 2010, , no-no.	2.4	40
87	The relationship between noise correlation and the Green's function in the presence of degeneracy and the absence of equipartition. Geophysical Journal International, 2010, 182, 1509-1514.	2.4	44
88	Averaging and sampling for magnetic-observatory hourly data. Annales Geophysicae, 2010, 28, 2079-2096.	1.6	4
89	A model for turbulent hydraulic fracture and application to crack propagation at glacier beds. Journal of Geophysical Research, 2010, 115, .	3.3	126
90	On establishing the accuracy of noise tomography travel-time measurements in a realistic medium. Geophysical Journal International, 2009, 178, 1555-1564.	2.4	165

#	Article	IF	CITATIONS
91	Iceâ€front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. Journal of Geophysical Research, 2008, 113, .	3.3	147
92	Possible mechanisms for glacial earthquakes. Journal of Geophysical Research, 2008, 113, .	3.3	54
93	Star patterns on lake ice. Physical Review E, 2007, 75, 066105.	2.1	5
94	Theoretical constraints on true polar wander. Journal of Geophysical Research, 2007, 112, .	3.3	75
95	Analysis of glacial earthquakes. Journal of Geophysical Research, 2007, 112, .	3.3	73
96	Seasonality and Increasing Frequency of Greenland Glacial Earthquakes. Science, 2006, 311, 1756-1758.	12.6	144
97	Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophysical Research Letters, 2005, 32, .	4.0	156
98	The morning glory wave of southern California. Journal of Geophysical Research, 2004, 109, .	3.3	11
99	The Relationship Between Cross Correlations and Green's Functions in Ambient Noise Interferometry with Bayesian Constraints. Geophysical Journal International, 0, , .	2.4	2