François De Guio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8047336/publications.pdf

Version: 2024-02-01

76 papers 10,158 citations

147801 31 h-index 70 g-index

77 all docs

77
docs citations

times ranked

77

10533 citing authors

#	Article	IF	CITATIONS
1	Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurology, The, 2013, 12, 822-838.	10.2	3,919
2	Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature, 1996, 383, 707-710.	27.8	1,893
3	CADASIL. Lancet Neurology, The, 2009, 8, 643-653.	10.2	939
4	2001–2011: A Decade of the LADIS (Leukoaraiosis And DISability) Study: What Have We Learned about White Matter Changes and Small-Vessel Disease?. Cerebrovascular Diseases, 2011, 32, 577-588.	1.7	258
5	A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms. Annals of Neurology, 2016, 80, 581-592.	5.3	250
6	Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology, 2012, 79, 2025-2028.	1.1	189
7	Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain, 2006, 129, 2375-2383.	7.6	176
8	Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease. Brain, 2013, 136, 2717-2726.	7.6	141
9	Impact of MRI markers in subcortical vascular dementia: A multi-modal analysis in CADASIL. Neurobiology of Aging, 2010, 31, 1629-1636.	3.1	124
10	R2* mapping for brain iron: associations with cognition in normal aging. Neurobiology of Aging, 2015, 36, 925-932.	3.1	122
11	Strategic white matter tracts for processing speed deficits in age-related small vessel disease. Neurology, 2014, 82, 1946-1950.	1.1	116
12	Cortical Neuronal Apoptosis in CADASIL. Stroke, 2006, 37, 2690-2695.	2.0	109
13	Brain Atrophy Is Related to Lacunar Lesions and Tissue Microstructural Changes in CADASIL. Stroke, 2007, 38, 1786-1790.	2.0	100
14	Pathogenesis of white matter changes in cerebral small vessel diseases: beyond vessel-intrinsic mechanisms. Clinical Science, 2017, 131, 635-651.	4.3	94
15	Are Developmental Trajectories of Cortical Folding Comparable Between Cross-sectional Datasets of Fetuses and Preterm Newborns?. Cerebral Cortex, 2016, 26, 3023-3035.	2.9	83
16	Predictors of Clinical Worsening in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2016, 47, 4-11.	2.0	81
17	Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1319-1337.	4.3	80
18	Intracortical Infarcts in Small Vessel Disease. Stroke, 2011, 42, e27-30.	2.0	74

#	Article	IF	CITATIONS
19	Brain activity and perceived exertion during cycling exercise: an fMRI study. British Journal of Sports Medicine, 2015, 49, 556-560.	6.7	72
20	Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL. Brain, 2008, 131, 2201-2208.	7.6	71
21	Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 191-204.	2.4	65
22	Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. Neurolmage, 2013, 66, 177-183.	4.2	62
23	Determinants of iron accumulation in the normal aging brain. Neurobiology of Aging, 2016, 43, 149-155.	3.1	59
24	Education modifies the relation of vascular pathology to cognitive function: cognitive reserve in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Neurobiology of Aging, 2013, 34, 400-407.	3.1	54
25	A study of cortical morphology in children with fetal alcohol spectrum disorders. Human Brain Mapping, 2014, 35, 2285-2296.	3.6	54
26	Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography. Magnetic Resonance Imaging, 2010, 28, 1525-1534.	1.8	51
27	Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 231-245.	4.3	49
28	Contrast-Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation. PLoS ONE, 2012, 7, e48953.	2.5	49
29	Loss of Venous Integrity in Cerebral Small Vessel Disease. Stroke, 2014, 45, 2124-2126.	2.0	43
30	Cognitive impairment in patients with cerebrovascular disease: A white paper from the links between stroke ESO Dementia Committee. European Stroke Journal, 2021, 6, 5-17.	5.5	37
31	Longitudinal changes of cortical morphology in CADASIL. Neurobiology of Aging, 2012, 33, 1002.e29-1002.e36.	3.1	34
32	Extensive White Matter Hyperintensities May Increase Brain Volume in Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2012, 43, 3252-3257.	2.0	31
33	Functional Magnetic Resonance Imaging Study Comparing Rhythmic Finger Tapping in Children and Adults. Pediatric Neurology, 2012, 46, 94-100.	2.1	30
34	White Matter Edema at the Early Stage of Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2015, 46, 258-261.	2.0	29
35	Alterations of the cerebral cortex in sporadic small vessel disease: A systematic review of inÂvivo MRI data. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 681-695.	4.3	29
	Cerebral Microbleeds and the Risk of Incident Ischemic Stroke in CADASIL (Cerebral Autosomal) Tj ETQq0 0 0 rgE	BT /Overlo	ck 10 Tf 50 67

3

2699-2703.

#	Article	IF	CITATIONS
37	Cerebral Atrophy in Cerebrovascular Disorders. Journal of Neuroimaging, 2010, 20, 213-218.	2.0	28
38	Measurement of brain atrophy in subcortical vascular disease: A comparison of different approaches and the impact of ischaemic lesions. NeuroImage, 2008, 43, 312-320.	4.2	27
39	Reaction Time is a Marker of Early Cognitive and Behavioral Alterations in Pure Cerebral Small Vessel Disease. Journal of Alzheimer's Disease, 2015, 47, 413-419.	2.6	27
40	Predictors and Clinical Impact of Incident Lacunes in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2017, 48, 283-289.	2.0	25
41	Different types of white matter hyperintensities in CADASIL: Insights from 7-Tesla MRI. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1654-1663.	4.3	25
42	Three-Dimensional MRI Analysis of Individual Volume of Lacunes in CADASIL. Stroke, 2009, 40, 124-128.	2.0	24
43	Prediction of 3-year clinical course in CADASIL. Neurology, 2016, 87, 1787-1795.	1.1	24
44	Magnetic resonance imaging method based on magnetic susceptibility effects to estimate bubble size in alveolar products: application to bread dough during proving. Magnetic Resonance Imaging, 2009, 27, 577-585.	1.8	23
45	In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL. PLoS ONE, 2014, 9, e106311.	2.5	23
46	Spectral clustering based parcellation of FETAL brain MRI., 2015,,.		22
47	Clinical correlates of longitudinal MRI changes in CADASIL. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1299-1305.	4.3	22
48	Different Types of White Matter Hyperintensities in CADASIL. Frontiers in Neurology, 2018, 9, 526.	2.4	21
49	Predictors of clinical or cerebral lesion progression in adult moyamoya angiopathy. Neurology, 2019, 93, e388-e397.	1.1	21
50	Sulcal Span in Azheimer's Disease, Amnestic Mild Cognitive Impairment, and Healthy Controls. Journal of Alzheimer's Disease, 2012, 29, 605-613.	2.6	20
51	White-Matter Lesions without Lacunar Infarcts in CADASIL. Journal of Alzheimer's Disease, 2012, 29, 903-911.	2.6	20
52	ADC Histograms from Routine DWI for Longitudinal Studies in Cerebral Small Vessel Disease: A Field Study in CADASIL. PLoS ONE, 2014, 9, e97173.	2.5	20
53	Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities. Neuroinformatics, 2018, 16, 269-281.	2.8	20
54	Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2020, 51, 21-28.	2.0	19

#	Article	IF	Citations
55	Decreased T1 Contrast between Gray Matter and Normal-Appearing White Matter in CADASIL. American Journal of Neuroradiology, 2014, 35, 72-76.	2.4	18
56	Incident cerebral lacunes: A review. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 909-921.	4.3	16
57	Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 261-271.	2.0	15
58	SPANOL (SPectral ANalysis of Lobes): A Spectral Clustering Framework for Individual and Group Parcellation of Cortical Surfaces in Lobes. Frontiers in Neuroscience, 2018, 12, 354.	2.8	14
59	Cognitive dysfunction and brain atrophy in Susac syndrome. Journal of Neurology, 2020, 267, 994-1003.	3.6	13
60	Shape of the Central Sulcus and Disability After Subcortical Stroke. Stroke, 2016, 47, 1023-1029.	2.0	12
61	Reaction Time Is Negatively Associated with Corpus Callosum Area in the Early Stages of CADASIL. American Journal of Neuroradiology, 2017, 38, 2094-2099.	2.4	9
62	Cerebral Microhemorrhages: Significance, Associations, Diagnosis, and Treatment. Current Treatment Options in Neurology, 2016, 18, 35.	1.8	8
63	Cognition, mood and behavior in CADASIL. Cerebral Circulation - Cognition and Behavior, 2022, 3, 100043.	0.9	7
64	Focal Macroscopic Cortical Lesions in Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2017, 48, 1408-1411.	2.0	6
65	Why Are Only Some Subcortical Ischemic Lesions on Diffusion Magnetic Resonance Imaging Associated With Stroke Symptoms in Small Vessel Disease?. Stroke, 2018, 49, 1920-1923.	2.0	6
66	Alteration of the Cortex Shape as a Proxy of White Matter Swelling in Severe Cerebral Small Vessel Disease. Frontiers in Neurology, 2019, 10, 753.	2.4	5
67	Covert Brain Infarcts. Stroke, 2020, 51, 2-3.	2.0	5
68	Model-driven parameterization of fetal cortical surfaces., 2015,,.		4
69	Vanishing White Matter Hyperintensities in CADASIL: A Case Report with Insight into Disease Mechanisms. Journal of Alzheimer's Disease, 2020, 78, 907-910.	2.6	4
70	Modeling the Cognitive Trajectory in CADASIL. Journal of Alzheimer's Disease, 2020, 77, 291-300.	2.6	4
71	Quantitative study of signal decay due to magnetic susceptibility interfaces: MRI simulations and experiments. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 1607-10.	0.5	2
72	Cortical Morphology in Fetal Alcohol Spectrum Disorders. , 2016, , 565-574.		1

#	Article	IF	CITATIONS
73	Increased PKR level in human CADASIL brains. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 473, 771-774.	2.8	1
74	Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL)., 2017,, 93-103.		1
75	Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy., 2022,, 586-591.e3.		O
76	The Neurovascular Neuropsychology of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) and Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-Like Episodes (MELAS). , 2020, , 139-159.		0