Tetsuro Majima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8045269/publications.pdf

Version: 2024-02-01

		159358	161609
55	4,404	30	54
papers	citations	h-index	g-index
56	56	56	5483
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metal-Free Photocatalyst for H ₂ Evolution in Visible to Near-Infrared Region: Black Phosphorus/Graphitic Carbon Nitride. Journal of the American Chemical Society, 2017, 139, 13234-13242.	6.6	907
2	Zâ€Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light. Angewandte Chemie - International Edition, 2018, 57, 2160-2164.	7.2	506
3	Zâ€Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light. Angewandte Chemie, 2018, 130, 2182-2186.	1.6	356
4	Au/La ₂ Ti ₂ O ₇ Nanostructures Sensitized with Black Phosphorus for Plasmonâ€Enhanced Photocatalytic Hydrogen Production in Visible and Nearâ€Infrared Light. Angewandte Chemie - International Edition, 2017, 56, 2064-2068.	7.2	284
5	Faster Electron Injection and More Active Sites for Efficient Photocatalytic H ₂ Evolution in gâ€C ₃ N ₄ /MoS ₂ Hybrid. Small, 2018, 14, e1703277.	5.2	206
6	g-C ₃ N ₄ /TiO ₂ Mesocrystals Composite for H ₂ Evolution under Visible-Light Irradiation and Its Charge Carrier Dynamics. ACS Applied Materials & Linterfaces, 2017, 9, 34844-34854.	4.0	163
7	2D/2D Heterostructured CdS/WS ₂ with Efficient Charge Separation Improving H ₂ Evolution under Visible Light Irradiation. ACS Applied Materials & Evolution and Evol	4.0	137
8	High-rate solar-light photoconversion of CO ₂ to fuel: controllable transformation from C ₁ to C ₂ products. Energy and Environmental Science, 2018, 11, 3183-3193.	15.6	136
9	In situ nitrogen-doped hollow-TiO ₂ /g-C ₃ N ₄ composite photocatalysts with efficient charge separation boosting water reduction under visible light. Journal of Materials Chemistry A, 2017, 5, 9671-9681.	5.2	118
10	Phase Effect of Ni _{<i>x</i>} P _{<i>y</i>} Hybridized with g-C ₃ N ₄ for Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2017, 9, 30583-30590.	4.0	116
11	Black Phosphorus Sensitized TiO ₂ Mesocrystal Photocatalyst for Hydrogen Evolution with Visible and Near-Infrared Light Irradiation. ACS Catalysis, 2019, 9, 3618-3626.	5.5	115
12	CO ₂ , water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. Energy and Environmental Science, 2019, 12, 2685-2696.	15.6	109
13	Topotactic Epitaxy of SrTiO ₃ Mesocrystal Superstructures with Anisotropic Construction for Efficient Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 5299-5303.	7.2	92
14	The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution. Physical Chemistry Chemical Physics, 2019, 21, 2318-2324.	1.3	90
15	<i>In Situ</i> Observation of Single Au Triangular Nanoprism Etching to Various Shapes for Plasmonic Photocatalytic Hydrogen Generation. ACS Nano, 2017, 11, 968-974.	7.3	63
16	Shallow Trap State-Induced Efficient Electron Transfer at the Interface of Heterojunction Photocatalysts: The Crucial Role of Vacancy Defects. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40860-40867.	4.0	63
17	Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation. Journal of Physical Chemistry Letters, 2017, 8, 844-849.	2.1	61
18	Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS ₂ . Nanoscale, 2017, 9, 1520-1526.	2.8	55

#	Article	IF	CITATIONS
19	Anisotropic Ag ₂ S–Au Triangular Nanoprisms with Desired Configuration for Plasmonic Photocatalytic Hydrogen Generation in Visible/Nearâ€Infrared Region. Advanced Functional Materials, 2018, 28, 1706969.	7.8	54
20	Single-molecule and -particle probing crystal edge/corner as highly efficient photocatalytic sites on a single TiO ₂ particle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18827-18833.	3.3	54
21	Au/La ₂ Ti ₂ O ₇ Nanostructures Sensitized with Black Phosphorus for Plasmonâ€Enhanced Photocatalytic Hydrogen Production in Visible and Nearâ€Infrared Light. Angewandte Chemie, 2017, 129, 2096-2100.	1.6	51
22	Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C ₃ N ₄ for photocatalytic H ₂ production. Chemical Communications, 2019, 55, 6014-6017.	2.2	45
23	Defect state-induced efficient hot electron transfer in Au nanoparticles/reduced TiO ₂ mesocrystal photocatalysts. Chemical Communications, 2018, 54, 6052-6055.	2.2	43
24	Charge Carrier Dynamics in TiO ₂ Mesocrystals with Oxygen Vacancies for Photocatalytic Hydrogen Generation under Solar Light Irradiation. Journal of Physical Chemistry C, 2018, 122, 15163-15170.	1.5	43
25	Facet-Dependent Photoreduction on Single ZnO Crystals. Journal of Physical Chemistry Letters, 2017, 8, 340-346.	2.1	42
26	Femtosecond time-resolved diffuse reflectance study on facet engineered chargeâ€carrier dynamics in Ag3PO4 for antibiotics photodegradation. Applied Catalysis B: Environmental, 2021, 281, 119479.	10.8	42
27	Dual function of graphene oxide for assisted exfoliation of black phosphorus and electron shuttle in promoting visible and near-infrared photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2019, 256, 117864.	10.8	41
28	Monitoring Transport Behavior of Charge Carriers in a Single CdS@CuS Nanowire via In Situ Single-Particle Photoluminescence Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 4017-4024.	2.1	37
29	Charge separation in a nanostep structured perovskite-type photocatalyst induced by successive surface heterojunctions. Journal of Materials Chemistry A, 2017, 5, 10442-10449.	5.2	34
30	Chemical design principles of next-generation antiviral surface coatings. Chemical Society Reviews, 2021, 50, 9741-9765.	18.7	31
31	Charge transfer dynamics in DNA revealed by time-resolved spectroscopy. Chemical Science, 2017, 8, 1752-1762.	3.7	29
32	Aggregationâ€Induced Singlet Oxygen Generation: Functional Fluorophore and Anthrylphenylene Dyad Selfâ€Assemblies. Chemistry - A European Journal, 2018, 24, 636-645.	1.7	29
33	The Development of Functional Mesocrystals for Energy Harvesting, Storage, and Conversion. Chemistry - A European Journal, 2018, 24, 6295-6307.	1.7	26
34	Near Bandgap Excitation Inhibits the Interfacial Electron Transfer of Semiconductor/Cocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 5920-5924.	4.0	23
35	Controllable nanothorns on TiO ₂ mesocrystals for efficient charge separation in hydrogen evolution. Chemical Communications, 2017, 53, 5306-5309.	2.2	19
36	Size-Dependent Relaxation Processes of Photoexcited [$\langle i \rangle n \langle i \rangle$]Cycloparaphenylenes ($\langle i \rangle n \langle i \rangle$ = 5â \in "12): Significant Contribution of Internal Conversion in Smaller Rings. Journal of Physical Chemistry A, 2019, 123, 4737-4742.	1.1	19

#	Article	IF	CITATIONS
37	Defect-mediated electron transfer in photocatalysts. Chemical Communications, 2021, 57, 3532-3542.	2.2	19
38	Facet Effects of Ag ₃ PO ₄ on Chargeâ€Carrier Dynamics: Tradeâ€Off Between Photocatalytic Activity and Chargeâ€Carrier Lifetime. Chemistry - A European Journal, 2018, 24, 14928-14932.	1.7	18
39	Shallow trap state-enhanced photocatalytic hydrogen evolution over thermal-decomposed polymeric carbon nitride. Chemical Communications, 2020, 56, 5921-5924.	2.2	18
40	Controlled Synthesis of Gold Nanoparticles on Fluorescent Nanodiamond via Electron-Beam-Induced Reduction Method for Dual-Modal Optical and Electron Bioimaging. ACS Applied Nano Materials, 2018, 1, 355-363.	2.4	17
41	Topotactic Epitaxy of SrTiO ₃ Mesocrystal Superstructures with Anisotropic Construction for Efficient Overall Water Splitting. Angewandte Chemie, 2017, 129, 5383-5387.	1.6	14
42	Charge-Separated Mixed Valency in an Unsymmetrical Acceptor–Donor–Donor Triad Based on Diarylboryl and Triarylamine Units. Journal of Organic Chemistry, 2019, 84, 8910-8920.	1.7	14
43	Pulse Radiolysis of TIPS-Pentacene and a Fluorene-bridged Bis(pentacene): Evidence for Intramolecular Singlet-Exciton Fission. Journal of Physical Chemistry Letters, 2018, 9, 3934-3938.	2.1	12
44	Influence of Charge Distribution on Structural Changes of Aromatic Imide Derivatives upon One-Electron Reduction Revealed by Time-Resolved Resonance Raman Spectroscopy during Pulse Radiolysis. Journal of Physical Chemistry A, 2018, 122, 8738-8744.	1.1	8
45	Anthraquinone-2-Sulfonate as a Microbial Photosensitizer and Capacitor Drives Solar-to-N ₂ O Production with a Quantum Efficiency of Almost Unity. Environmental Science & Echnology, 2022, 56, 5161-5169.	4.6	8
46	Factors affecting photocatalytic activity of visible light-responsive titanium dioxide doped with chromium ions. Catalysis Science and Technology, 2018, 8, 4726-4733.	2.1	7
47	Proton Transfer Accompanied by the Oxidation of Adenosine. Chemistry - A European Journal, 2019, 25, 7711-7718.	1.7	6
48	Excited-State Properties of Radical Anions of C70 and Its Derivatives: Significant Differences from the Case of C60. Journal of Physical Chemistry C, 2018, 122, 13385-13390.	1.5	5
49	Significant structural relaxations of excited [⟨i⟩n⟨ i⟩]cycloparaphenylene dications (⟨i⟩n⟨ i⟩ = 5–9). Physical Chemistry Chemical Physics, 2018, 20, 29207-29211.	1.3	5
50	Spirally Configured (<i>cis</i> -Stilbene) Trimers: Steady-State and Time-Resolved Photophysical Studies and Organic Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2018, 10, 25561-25569.	4.0	4
51	Radical lons of a π-Bowl Sumanene: Effects of Strained Structure on the Electronic Transitions. Journal of Physical Chemistry A, 2017, 121, 4902-4906.	1.1	2
52	Formation of the Chargeâ€Localized Dimer Radical Cation of 2â€Ethylâ€9,10â€dimethoxyanthracene in Solution Phase. Chemistry - A European Journal, 2019, 25, 5586-5594.	1.7	2
53	Innentitelbild: Zâ€6cheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light (Angew. Chem. 8/2018). Angewandte Chemie, 2018, 130, 2026-2026.	1.6	1
54	Frontispiece: The Development of Functional Mesocrystals for Energy Harvesting, Storage, and Conversion. Chemistry - A European Journal, 2018, 24, .	1.7	0

TETSURO MAJIMA

#	Article	IF	CITATIONS
55	Amplifying fluorescence signal contrast of aptamer-modified microspheres inspired by whispering-gallery mode lasing. RSC Advances, 2018, 8, 20822-20828.	1.7	O