
Anna M Stefanowicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8044571/publications.pdf Version: 2024-02-01

ANNA M STEEANOWICZ

#	Article	IF	CITATIONS
1	Reynoutria japonica invasion negatively affects arbuscular mycorrhizal fungi communities regardless of the season and soil conditions. Applied Soil Ecology, 2022, 169, 104152.	4.3	9
2	Herbaceous plant species support soil microbial performance in deciduous temperate forests. Science of the Total Environment, 2022, 810, 151313.	8.0	8
3	Contrasting effects of extracts from invasive Reynoutria japonica on soil microbial biomass, activity, and community structure. Biological Invasions, 2022, 24, 3233-3247.	2.4	2
4	Moderate effects of tree species identity on soil microbial communities and soil chemical properties in a common garden experiment. Forest Ecology and Management, 2021, 482, 118799.	3.2	17
5	Differences in phenolics produced by invasive Quercus rubra and native plant communities induced changes in soil microbial properties and enzymatic activity. Forest Ecology and Management, 2021, 482, 118901.	3.2	25
6	Invasive plant Reynoutria japonica produces large amounts of phenolic compounds and reduces the biomass but not activity of soil microbial communities. Science of the Total Environment, 2021, 767, 145439.	8.0	20
7	Functional traits predict resident plant response to <i>Reynoutria japonica</i> invasion in riparian and fallow communities in southern Poland. AoB PLANTS, 2021, 13, plab035.	2.3	3
8	The impact of beech and riparian forest herbaceous plant species with contrasting traits on arbuscular mycorrhizal fungi abundance and diversity. Forest Ecology and Management, 2021, 492, 119245.	3.2	8
9	Community composition of ants beneath invasive plant Rosa rugosa. Entomological Science, 2021, 24, 361.	0.6	1
10	Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere, 2020, 240, 124922.	8.2	91
11	<i>Solidago canadensis</i> invasion in abandoned arable fields induces minor changes in soil properties and does not affect the performance of subsequent crops. Land Degradation and Development, 2020, 31, 334-345.	3.9	13
12	Invasive red oak (Quercus rubra L.) modifies soil physicochemical properties and forest understory vegetation. Forest Ecology and Management, 2020, 472, 118253.	3.2	30
13	Large differences in biomass quantity and quality between invasive Reynoutria japonica and resident vegetation are not reflected in topsoil physicochemical properties. Geoderma, 2020, 368, 114307.	5.1	10
14	Invasive Quercus rubra negatively affected soil microbial communities relative to native Quercus robur in a semi-natural forest. Science of the Total Environment, 2019, 696, 133977.	8.0	21
15	Invasion of Rosa rugosa induced changes in soil nutrients and microbial communities of coastal sand dunes. Science of the Total Environment, 2019, 677, 340-349.	8.0	32
16	Invasive plant species identity affects soil microbial communities in a mesocosm experiment. Applied Soil Ecology, 2019, 136, 168-177.	4.3	27
17	Differential influence of four invasive plant species on soil physicochemical properties in a pot experiment. Journal of Soils and Sediments, 2018, 18, 1409-1423.	3.0	35
18	Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites. Science of the Total Environment, 2018, 642, 264-275.	8.0	19

#	Article	IF	CITATIONS
19	Do the impacts of alien invasive plants differ from expansive native ones? An experimental study on arbuscular mycorrhizal fungi communities. Biology and Fertility of Soils, 2018, 54, 631-643.	4.3	27
20	Waste heaps left by historical Zn-Pb ore mining are hotspots of species diversity of beech forest understory vegetation. Science of the Total Environment, 2017, 599-600, 32-41.	8.0	16
21	Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties. Science of the Total Environment, 2017, 574, 938-946.	8.0	62
22	High concentrations of heavy metals in beech forest understory plants growing on waste heaps left by Zn-Pb ore mining. Journal of Geochemical Exploration, 2016, 169, 157-162.	3.2	21
23	Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biology and Fertility of Soils, 2016, 52, 879-893.	4.3	82
24	The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining. Environmental Science and Pollution Research, 2016, 23, 6524-6534.	5.3	31
25	Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities. Biology and Fertility of Soils, 2016, 52, 841-852.	4.3	81
26	Variation in dry grassland communities along a heavy metals gradient. Ecotoxicology, 2016, 25, 80-90.	2.4	60
27	Effects of Calamagrostis epigejos, Chamaenerion palustre and Tussilago farfara on nutrient availability and microbial activity in the surface layer of spoil heaps after hard coal mining. Ecological Engineering, 2015, 83, 328-337.	3.6	35
28	Inconspicuous waste heaps left by historical Zn–Pb mining are hot spots of soil contamination. Geoderma, 2014, 235-236, 1-8.	5.1	46
29	Flora of spoil heaps after hard coal mining in Trzebinia (southern Poland): effect of substratum properties. Acta Botanica Croatica, 2013, 72, 237-256.	0.7	23
30	Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants. Applied Soil Ecology, 2012, 59, 106-115.	4.3	33
31	Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Science of the Total Environment, 2012, 439, 211-219.	8.0	69
32	Direct and indirect effects of metal contamination on soil biota in a Zn–Pb post-mining and smelting area (S Poland). Environmental Pollution, 2011, 159, 1516-1522.	7.5	59
33	Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Science of the Total Environment, 2010, 408, 6134-6141.	8.0	39
34	Model-based experimental design for assessing effects of mixtures of chemicals. Environmental Pollution, 2010, 158, 115-120.	7.5	19
35	Pollution-induced tolerance of soil bacterial communities in meadow and forest ecosystems polluted with heavy metals. European Journal of Soil Biology, 2009, 45, 363-369.	3.2	34
36	Metals affect soil bacterial and fungal functional diversity differently. Environmental Toxicology and Chemistry, 2008, 27, 591-598.	4.3	131

#	Article	IF	CITATIONS
37	Community level physiological profiles of microbial communities from forest humus polluted with different amounts of Zn, Pb, and Cd—Preliminary study with BIOLOG ecoplates. Soil Science and Plant Nutrition, 2004, 50, 941-944.	1.9	4
38	The genetic diversity of Asplenium viride (Aspleniaceae) fern colonizing heavy metal-polluted sites. Plant Growth Regulation, 0, , .	3.4	0