Roberto Andreozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8044551/publications.pdf

Version: 2024-02-01

87 papers 5,740 citations

36 h-index 75 g-index

90 all docs

90 docs citations

90 times ranked 6290 citing authors

#	Article	IF	Citations
1	Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 2003, 50, 1319-1330.	8.2	1,064
2	Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Research, 2004, 38, 414-422.	11.3	382
3	Antibiotic removal from wastewaters: The ozonation of amoxicillin. Journal of Hazardous Materials, 2005, 122, 243-250.	12.4	342
4	Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere, 2004, 54, 497-505.	8.2	306
5	Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Research, 2003, 37, 993-1004.	11.3	297
6	Antibiotics in the Environment:Â Occurrence in Italian STPs, Fate, and Preliminary Assessment on Algal Toxicity of Amoxicillin. Environmental Science & Eamp; Technology, 2004, 38, 6832-6838.	10.0	270
7	Carbamazepine in water: persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Research, 2002, 36, 2869-2877.	11.3	259
8	The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution. Applied Catalysis A: General, 1996, 138, 75-81.	4.3	168
9	Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Research, 2006, 40, 630-638.	11.3	144
10	Bezafibrate removal by means of ozonation: Primary intermediates, kinetics, and toxicity assessment. Water Research, 2007, 41, 2525-2532.	11.3	123
11	Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation. Journal of Hazardous Materials, 2003, 103, 233-246.	12.4	119
12	Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review. International Journal of Hydrogen Energy, 2014, 39, 16812-16831.	7.1	115
13	The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Research, 1998, 32, 1492-1496.	11.3	76
14	Removal of nitrate and simultaneous hydrogen generation through photocatalytic reforming of glycerol over "in situ―prepared zero-valent nano copper/P25. Applied Catalysis B: Environmental, 2017, 202, 539-549.	20.2	76
15	Oxidation of aromatic substrates in water/goethite slurry by means of hydrogen peroxide. Water Research, 2002, 36, 4691-4698.	11.3	71
16	Photodegradation of naproxen and its photoproducts in aqueous solution at 254Ânm: A kinetic investigation. Water Research, 2013, 47, 373-383.	11.3	69
17	TiO2/Cu(II) photocatalytic production of benzaldehyde from benzyl alcohol in solar pilot plant reactor. Applied Catalysis B: Environmental, 2013, 136-137, 56-63.	20.2	67
18	Selective oxidation of benzyl alcohol to benzaldehyde in water by TiO2/Cu(II)/UV solar system. Chemical Engineering Journal, 2011, 172, 243-249.	12.7	64

#	Article	IF	Citations
19	Oxidation of 3,4-dihydroxybenzoic acid by means of hydrogen peroxide in aqueous goethite slurry. Water Research, 2002, 36, 2761-2768.	11.3	62
20	Advanced oxidation processes for the treatment of mineral oil-contaminated wastewaters. Water Research, 2000, 34, 620-628.	11.3	60
21	Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials. Energies, 2017, 10, 1624.	3.1	56
22	The oxidation of metol (N-methyl-p-aminophenol) in aqueous solution by UV/H2O2 photolysis. Water Research, 2000, 34, 463-472.	11.3	55
23	Effect of combined physico-chemical processes on the phytotoxicity of olive mill wastewaters. Water Research, 2008, 42, 1684-1692.	11.3	51
24	Hydrogen production through photoreforming processes over Cu2O/TiO2 composite materials: A mini-review. International Journal of Hydrogen Energy, 2020, 45, 28531-28552.	7.1	51
25	Photodegradation and ecotoxicology of acyclovir in water under UV254 and UV254/H2O2 processes. Water Research, 2017, 122, 591-602.	11.3	50
26	Kinetic investigation of Cu(II) ions photoreduction in presence of titanium dioxide and formic acid. Water Research, 2008, 42, 4498-4506.	11.3	48
27	Kinetic modeling of pyruvic acid ozonation in aqueous solutions catalyzed by Mn(II) and Mn(IV) ions. Water Research, 2001, 35, 109-120.	11.3	46
28	Fe(III) homogeneous photocatalysis for the removal of 1,2-dichlorobenzene in aqueous solution by means UV lamp and solar light. Water Research, 2006, 40, 3785-3792.	11.3	46
29	Oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol by means of Fe(III)-homogeneous photocatalysis and algal toxicity assessment of the treated solutions. Water Research, 2011, 45, 2038-2048.	11.3	46
30	Removal of benzoic acid in aqueous solution by Fe(III) homogeneous photocatalysis. Water Research, 2004, 38, 1225-1236.	11.3	45
31	In situ photodeposited nanoCu on TiO2 as a catalyst for hydrogen production under UV/visible radiation. Applied Catalysis A: General, 2016, 518, 142-149.	4.3	44
32	Kinetic modeling of hydrogen generation over nano-Cu (s) /TiO 2 catalyst through photoreforming of alcohols. Catalysis Today, 2017, 281, 117-123.	4.4	44
33	Photochemical degradation of benzotriazole in aqueous solution. Journal of Chemical Technology and Biotechnology, 1998, 73, 93-98.	3.2	43
34	A kinetic model for the degradation of benzothiazole by Fe3+-photo-assisted Fenton process in a completely mixed batch reactor. Journal of Hazardous Materials, 2000, 80, 241-257.	12.4	40
35	Removal of EDDS and copper from waters by TiO2 photocatalysis under simulated UV–solar conditions. Chemical Engineering Journal, 2014, 251, 257-268.	12.7	39
36	Ozonation of p-chlorophenol in aqueous solution. Journal of Hazardous Materials, 1999, 69, 303-317.	12.4	38

#	Article	IF	Citations
37	Iron(III) (hydr)oxide-mediated photooxidation of 2-aminophenol in aqueous solution: a kinetic study. Water Research, 2003, 37, 3682-3688.	11.3	36
38	Energy recovery in wastewater decontamination: Simultaneous photocatalytic oxidation of an organic substrate and electricity generation. Water Research, 2009, 43, 2710-2716.	11.3	35
39	Ozone Solubility in Phosphate-Buffered Aqueous Solutions:Â Effect of Temperature,tert-Butyl Alcohol, and pH. Industrial & Description (September 1996, 35, 1467-1471).	3.7	34
40	Biodiesel production from <i>Stichococcus</i> strains at laboratory scale. Journal of Chemical Technology and Biotechnology, 2011, 86, 776-783.	3.2	34
41	Effect of surface properties of copper-modified commercial titanium dioxide photocatalysts on hydrogen production through photoreforming of alcohols. International Journal of Hydrogen Energy, 2017, 42, 28349-28362.	7.1	34
42	Removal of antiretroviral drugs stavudine and zidovudine in water under UV254 and UV254/H2O2 processes: Quantum yields, kinetics and ecotoxicology assessment. Journal of Hazardous Materials, 2018, 349, 195-204.	12.4	33
43	Effects of photobioreactors design and operating conditions on Stichococcus bacillaris biomass and biodiesel production. Biochemical Engineering Journal, 2013, 74, 8-14.	3.6	31
44	Evaluation of biodegradation kinetic constants for aromatic compounds by means of aerobic batch experiments. Chemosphere, 2006, 62, 1431-1436.	8.2	30
45	The thermal decomposition of dimethoate. Journal of Hazardous Materials, 1999, 64, 283-294.	12.4	29
46	Kinetic and chemical characterization of thermal decomposition of dicumylperoxide in cumene. Journal of Hazardous Materials, 2011, 187, 157-163.	12.4	29
47	Hydrogen production by photoreforming of formic acid in aqueous copper/TiO2 suspensions under UV-simulated solar radiation at room temperature. International Journal of Hydrogen Energy, 2013, 38, 9644-9654.	7.1	29
48	Direct photolysis of benzoylecgonine under UV irradiation at 254nm in a continuous flow microcapillary array photoreactor. Chemical Engineering Journal, 2016, 283, 243-250.	12.7	29
49	N-methyl-p-aminophenol (metol) ozonation in aqueous solution: kinetics, mechanism and toxicological characterization of ozonized samples. Water Research, 2000, 34, 4419-4429.	11.3	28
50	Investigation on the removal of the major cocaine metabolite (benzoylecgonine) in water matrices by UV 254 /H 2 O 2 process by using a flow microcapillary film array photoreactor as an efficient experimental tool. Water Research, 2016, 89, 375-383.	11.3	25
51	Near UVâ€Irradiation of CuO _x â€Impregnated TiO ₂ Providing Active Species for H ₂ Production Through Methanol Photoreforming. ChemCatChem, 2019, 11, 4314-4326.	3.7	25
52	Solar photocatalytic processes for treatment of soil washing wastewater. Chemical Engineering Journal, 2017, 318, 10-18.	12.7	21
53	Heterogeneous benzaldehyde nitration in batch and continuous flow microreactor. Chemical Engineering Journal, 2019, 377, 120346.	12.7	21
54	Analysis of complex reaction networks in gas-liquid systems: the ozonation of 2-hydroxypyridine in aqueous solutions. Industrial & Engineering Chemistry Research, 1991, 30, 2098-2104.	3.7	20

#	Article	IF	CITATIONS
55	Dicumyl Peroxide Thermal Decomposition in Cumene: Development of a Kinetic Model. Industrial & Engineering Chemistry Research, 2012, 51, 7493-7499.	3.7	20
56	Salicylic Acid Nitration by Means of Nitric Acid/Acetic Acid System:Â Chemical and Kinetic Characterization. Organic Process Research and Development, 2006, 10, 1199-1204.	2.7	19
57	Photocatalytic reforming of formic acid for hydrogen production in aqueous solutions containing cupric ions and TiO2 suspended nanoparticles under UV-simulated solar radiation. Applied Catalysis A: General, 2016, 518, 181-188.	4.3	18
58	Use of an amorphous iron oxide hydrated as catalyst for hydrogen peroxide oxidation of ferulic acid in water. Journal of Hazardous Materials, 2008, 152, 870-875.	12.4	17
59	Selective photo-oxidation of ethanol to acetaldehyde and acetic acid in water in presence of TiO2 and cupric ions under UV–simulated solar radiation. Chemical Engineering Journal, 2019, 361, 1524-1534.	12.7	17
60	Kinetic modeling of partial oxidation of benzyl alcohol in water by means of Fe(III)/O2/UV–solar simulated process. Chemical Engineering Journal, 2014, 249, 130-142.	12.7	16
61	Hydrogen production upon UV-light irradiation of Cu/TiO2 photocatalyst in the presence of alkanol-amines. International Journal of Hydrogen Energy, 2020, 45, 26701-26715.	7.1	16
62	Thermal decomposition of acetic anhydride–nitric acid mixtures. Journal of Hazardous Materials, 2002, 90, 111-121.	12.4	15
63	Fe(iii)-photocatalytic partial oxidation of benzyl alcohol to benzaldehyde under UV-solar simulated radiation. Photochemical and Photobiological Sciences, 2013, 12, 1991.	2.9	15
64	Ultrafast photodegradation of isoxazole and isothiazolinones by UV254 and UV254/H2O2 photolysis in a microcapillary reactor. Water Research, 2020, 169, 115203.	11.3	15
65	Nitric acid decomposition kinetics in mixed acid and their use in the modeling of aromatic nitration. Chemical Engineering Journal, 2013, 228, 366-373.	12.7	14
66	Detailed thermal and kinetic modeling of cumene hydroperoxide decomposition in cumene. Chemical Engineering Research and Design, 2013, 91, 262-268.	5.6	14
67	Photoactivated Fe(III)/Fe(II)/WO3–Pd fuel cell for electricity generation using synthetic and real effluents under visible light. Renewable Energy, 2020, 147, 1070-1081.	8.9	14
68	Recovery of palladium (II) from aqueous solution through photocatalytic deposition in presence of ZnO under UV/Visible-light radiation. Journal of Environmental Chemical Engineering, 2021, 9, 106523.	6.7	13
69	Sacrificial photocatalysis: removal of nitrate and hydrogen production by nano-copper-loaded P25 titania. A kinetic and ecotoxicological assessment. Environmental Science and Pollution Research, 2017, 24, 5898-5907.	5.3	12
70	Benzaldehyde nitration by mixed acid under homogeneous condition: A kinetic modeling. Chemical Engineering Journal, 2017, 307, 1076-1083.	12.7	12
71	Efficient acetaldehyde production and recovery upon selective Cu/TiO2-photocatalytic oxidation of ethanol in aqueous solution. Chemical Engineering Journal, 2020, 393, 123425.	12.7	12
72	Kinetic and Safety Characterization of the Nitration Process of Methyl Benzoate in Mixed Acid. Organic Process Research and Development, 2012, 16, 2001-2007.	2.7	11

#	Article	IF	CITATIONS
73	An evaluation of the application of a TiO ₂ / Cu(II)/solar simulated radiation system for selective oxidation of benzyl alcohol derivatives. Journal of Chemical Technology and Biotechnology, 2013, 88, 864-872.	3.2	11
74	Alkaline direct transesterification of different species of Stichococcus for bio-oil production. New Biotechnology, 2016, 33, 797-806.	4.4	10
75	Modeling and validation of a modular multi-lamp photo-reactor for cetylpyridinium chloride degradation by UV and UV/H2O2 processes. Chemical Engineering Journal, 2019, 376, 120380.	12.7	9
76	Kinetic characterization of the photosynthetic reaction centres in microalgae by means of fluorescence methodology. Journal of Biotechnology, 2015, 212, 1-10.	3.8	8
77	(S)-Nitroxycarnitine nitrate production from (S)-carnitine by using acetic anhydride/nitric acid/acetic acid mixtures: safety assessment. Journal of Hazardous Materials, 2004, 113, 1-10.	12.4	5
78	Solubility of 5-Nitro- and 3-Nitrosalicylic Acids in an Acetic Acid/Nitric Acid Mixture. Journal of Chemical &	1.9	5
79	Thermal Decomposition of 2-Nitrobenzoic Acid. Journal of Chemical Technology and Biotechnology, 1997, 69, 297-300.	3.2	3
80	Ternary HNO ₃ â€"H ₂ SO ₄ â€"H ₂ O Mixtures: A Simplified Approach for the Calculation of the Equilibrium Composition. Industrial & Simplified Research, 2018, 57, 1696-1704.	3.7	3
81	Metal-based semiconductor nanomaterials for photocatalysis. , 2018, , 187-213.		3
82	A procedure for the assessment of the toxicity of intermediates and products formed during the accidental thermal decomposition of a chemical species. Journal of Hazardous Materials, 2010, 176, 575-578.	12.4	2
83	LIGHT INTENSITIES MAXIMIZING PHOTOSYNTHESIS AND KINETICS OF PHOTOCHEMICAL STEPS IN Graesiella emersonii UNDER DIFFERENT CULTIVATION STRATEGIES. Environmental Engineering and Management Journal, 2019, 18, 1519-1526.	0.6	2
84	Hazard assessment of 4-nitrobenzoic acid production process. Journal of Loss Prevention in the Process Industries, 1997, 10, 205-209.	3.3	1
85	Removal of Organic Pollutants from Soil: The Ozonation of Clofibric Acid in Aqueous Slurries. Ozone: Science and Engineering, 2006, 28, 47-52.	2.5	1
86	A Kinetic Investigation on the Ozonation of Glycerol and its Oxygenated Derivatives. Ozone: Science and Engineering, 2009, 31, 445-453.	2.5	1
87	Rate evolution of benzonitrile nitration under heterogeneous conditions. Journal of Chemical Technology and Biotechnology, 1994, 61, 269-272.	3.2	0