Anthony R White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8044225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Cell RNA-Seq Analysis of Olfactory Mucosal Cells of Alzheimer's Disease Patients. Cells, 2022, 11, 676.	4.1	20
2	ALS monocyte-derived microglia-like cells reveal cytoplasmic TDP-43 accumulation, DNA damage, and cell-specific impairment of phagocytosis associated with disease progression. Journal of Neuroinflammation, 2022, 19, 58.	7.2	43
3	"Focused Ultrasound-mediated Drug Delivery in Humans – a Path Towards Translation in Neurodegenerative Diseases― Pharmaceutical Research, 2022, 39, 427-439.	3.5	16
4	Biometal Dyshomeostasis in Olfactory Mucosa of Alzheimer's Disease Patients. International Journal of Molecular Sciences, 2022, 23, 4123.	4.1	3
5	Neuron-astrocyte transmitophagy is altered in Alzheimer's disease. Neurobiology of Disease, 2022, 170, 105753.	4.4	27
6	Recent Advances in Microglia Modelling to Address Translational Outcomes in Neurodegenerative Diseases. Cells, 2022, 11, 1662.	4.1	6
7	Potential Impacts of Extreme Heat and Bushfires on Dementia. Journal of Alzheimer's Disease, 2021, 79, 969-978.	2.6	15
8	Chronic stress and <scp>A</scp> lzheimer's disease: the interplay between the hypothalamic–pituitary–adrenal axis, genetics and microglia. Biological Reviews, 2021, 96, 2209-2228.	10.4	37
9	Increased iron content in the heart of the Fmr1 knockout mouse. BioMetals, 2021, 34, 947-954.	4.1	5
10	Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 8715.	4.1	10
11	Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. Journal of Alzheimer's Disease, 2021, 83, 23-41.	2.6	31
12	Integrative Network-Based Analysis Reveals Gene Networks and Novel Drug Repositioning Candidates for Alzheimer Disease. Neurology: Genetics, 2021, 7, e622.	1.9	17
13	Editorial: Air pollution and brain health. Neurochemistry International, 2020, 141, 104900.	3.8	2
14	Urban air particulate matter induces mitochondrial dysfunction in human olfactory mucosal cells. Particle and Fibre Toxicology, 2020, 17, 18.	6.2	36
15	Olfactory cell cultures to investigate health effects of air pollution exposure: Implications for neurodegeneration. Neurochemistry International, 2020, 136, 104729.	3.8	15
16	The potential impact of bushfire smoke on brain health. Neurochemistry International, 2020, 139, 104796.	3.8	20
17	Altered Brain Endothelial Cell Phenotype from a Familial Alzheimer Mutation and Its Potential Implications for Amyloid Clearance and Drug Delivery. Stem Cell Reports, 2020, 14, 924-939.	4.8	63
18	If Human Brain Organoids Are the Answer to Understanding Dementia, What Are the Questions?. Neuroscientist, 2020, 26, 438-454.	3.5	23

#	Article	IF	CITATIONS
19	Modification of Biodistribution and Brain Uptake of Copper Bis(thiosemicarbazonato) Complexes by the Incorporation of Amine and Polyamine Functional Groups. Inorganic Chemistry, 2019, 58, 4540-4552.	4.0	25
20	Nexus between mitochondrial function, iron, copper and glutathione in Parkinson's disease. Neurochemistry International, 2018, 117, 126-138.	3.8	46
21	Effect of Structural Modifications to Glyoxal-bis(thiosemicarbazonato)copper(II) Complexes on Cellular Copper Uptake, Copper-Mediated ATP7A Trafficking, and P-Glycoprotein Mediated Efflux. Journal of Medicinal Chemistry, 2018, 61, 711-723.	6.4	21
22	Cull(atsm) Attenuates Neuroinflammation. Frontiers in Neuroscience, 2018, 12, 668.	2.8	26
23	Failure of Autophagy–Lysosomal Pathways in Rod Photoreceptors Causes the Early Retinal Degeneration Phenotype Observed in <i>Cln6^{nclf}</i> Mice. , 2018, 59, 5082.		27
24	3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochemistry International, 2018, 120, 191-199.	3.8	27
25	HX600, a synthetic agonist for RXR-Nurr1 heterodimer complex, prevents ischemia-induced neuronal damage. Brain, Behavior, and Immunity, 2018, 73, 670-681.	4.1	29
26	The accumulation of enzymatically inactive cuproenzymes is a CNS-specific phenomenon of the SOD1G37R mouse model of ALS and can be restored by overexpressing the human copper transporter hCTR1. Experimental Neurology, 2018, 307, 118-128.	4.1	15
27	Cull(atsm) improves the neurological phenotype and survival of SOD1C93A mice and selectively increases enzymatically active SOD1 in the spinal cord. Scientific Reports, 2017, 7, 42292.	3.3	70
28	Adamantyl- and other polycyclic cage-based conjugates of desferrioxamine B (DFOB) for treating iron-mediated toxicity in cell models of Parkinson's disease. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1698-1704.	2.2	10
29	Abnormal Function of Metalloproteins Underlies Most Neurodegenerative Diseases. , 2017, , 415-438.		2
30	TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Human Molecular Genetics, 2017, 26, 1732-1746.	2.9	62
31	Typeâ€l interferons in Parkinson's disease: innate inflammatory response drives fate of neurons in model of degenerative brain disorder. Journal of Neurochemistry, 2017, 141, 9-11.	3.9	3
32	The Copper bis(thiosemicarbazone) Complex Cull(atsm) Is Protective Against Cerebral Ischemia Through Modulation of the Inflammatory Milieu. Neurotherapeutics, 2017, 14, 519-532.	4.4	42
33	Disease-Induced Alterations in Brain Drug Transporters in Animal Models of Alzheimer's Disease. Pharmaceutical Research, 2017, 34, 2652-2662.	3.5	11
34	Copper and Alzheimer's Disease. Advances in Neurobiology, 2017, 18, 199-216.	1.8	71
35	Loss of CLN5 causes altered neurogenesis in a childhood neurodegenerative disorder. DMM Disease Models and Mechanisms, 2017, 10, 1089-1100.	2.4	14

Copper and Molecular Aspects of Cell Signaling. , 2017, , 85-99.

#	Article	IF	CITATIONS
37	Endogenous Cu in the central nervous system fails to satiate the elevated requirement for Cu in a mutant SOD1 mouse model of ALS. Metallomics, 2016, 8, 1002-1011.	2.4	28
38	Circumventing the Crabtree Effect: A method to induce lactate consumption and increase oxidative phosphorylation in cell culture. International Journal of Biochemistry and Cell Biology, 2016, 79, 128-138.	2.8	38
39	X-ray fluorescence microscopic measurement of elemental distribution in the mouse retina with age. Metallomics, 2016, 8, 1110-1121.	2.4	5
40	Enhancing survival motor neuron expression extends lifespan and attenuates neurodegeneration in mutant TDP-43 mice. Human Molecular Genetics, 2016, 25, 4080-4093.	2.9	22
41	Restoration of intestinal function in an MPTP model of Parkinson's Disease. Scientific Reports, 2016, 6, 30269.	3.3	25
42	A greater focus on metals in biomedicine and neuroscience is needed. BMC Pharmacology & Toxicology, 2016, 17, 53.	2.4	4
43	Pyrrolidine dithiocarbamate activates the Nrf2 pathway in astrocytes. Journal of Neuroinflammation, 2016, 13, 49.	7.2	38
44	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
45	Advances in the Development of Disease-Modifying Treatments for Amyotrophic Lateral Sclerosis. CNS Drugs, 2016, 30, 227-243.	5.9	36
46	Protein Labelling with Versatile Phosphorescent Metal Complexes for Live Cell Luminescence Imaging. Chemistry - A European Journal, 2015, 21, 14146-14155.	3.3	20
47	Editorial: Metals and neurodegeneration: restoring the balance. Frontiers in Aging Neuroscience, 2015, 7, 127.	3.4	30
48	Metal-deficient SOD1 in amyotrophic lateral sclerosis. Journal of Molecular Medicine, 2015, 93, 481-487.	3.9	51
49	Intracellular Distribution of Fluorescent Copper and Zinc Bis(thiosemicarbazonato) Complexes Measured with Fluorescence Lifetime Spectroscopy. Inorganic Chemistry, 2015, 54, 9556-9567.	4.0	24
50	Znll(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism. Neurobiology of Disease, 2015, 81, 20-24.	4.4	28
51	Toward Hypoxia-Selective Rhenium and Technetium Tricarbonyl Complexes. Inorganic Chemistry, 2015, 54, 9594-9610.	4.0	24
52	Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43. Human Molecular Genetics, 2015, 24, 1655-1669.	2.9	48
53	Increased metal content in the TDP-43A315T transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience, 2014, 6, 15.	3.4	37
54	Copper as a key regulator of cell signalling pathways. Expert Reviews in Molecular Medicine, 2014, 16, e11.	3.9	139

#	Article	IF	CITATIONS
55	Heterogeneous nuclear ribonucleoproteins in amyotrophic †dateral sclerosis: what do we know?. Future Neurology, 2014, 9, 173-185.	0.5	1
56	Phosphorylation of Amyloid Precursor Protein at Threonine 668 Is Essential for Its Copper-responsive Trafficking in SH-SY5Y Neuroblastoma Cells. Journal of Biological Chemistry, 2014, 289, 11007-11019.	3.4	41
57	Deregulation of biometal homeostasis: the missing link for neuronal ceroid lipofuscinoses?. Metallomics, 2014, 6, 932-943.	2.4	27
58	Mitochondrial metals as a potential therapeutic target in neurodegeneration. British Journal of Pharmacology, 2014, 171, 2159-2173.	5.4	27
59	X-ray fluorescence imaging reveals subcellular biometal disturbances in a childhood neurodegenerative disorder. Chemical Science, 2014, 5, 2503-2516.	7.4	38
60	Oral Treatment with Cull(atsm) Increases Mutant SOD1 In Vivo but Protects Motor Neurons and Improves the Phenotype of a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2014, 34, 8021-8031.	3.6	161
61	Deregulation of subcellular biometal homeostasis through loss of the metal transporter, Zip7, in a childhood neurodegenerative disorder. Acta Neuropathologica Communications, 2014, 2, 25.	5.2	37
62	Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the Huntington's disease affected brain. Human Molecular Genetics, 2014, 23, 4051-4063.	2.9	41
63	Neuroprotective Copper Bis(thiosemicarbazonato) Complexes Promote Neurite Elongation. PLoS ONE, 2014, 9, e90070.	2.5	39
64	Therapeutic effects of Cu ^{II} (atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 586-590.	1.7	82
65	Phosphorylation of hnRNP K controls cytosolic accumulation of TDP-43. Molecular Neurodegeneration, 2013, 8, P46.	10.8	3
66	Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry. Metallomics, 2013, 5, 1656.	2.4	39
67	Copper modulates the large dense core vesicle secretory pathway in PC12 cells. Metallomics, 2013, 5, 700.	2.4	10
68	Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease. Free Radical Biology and Medicine, 2013, 60, 147-156.	2.9	26
69	Oxidative stress and neurodegeneration. Neurochemistry International, 2013, 62, 521.	3.8	5
70	Immunotherapeutic approaches in prion disease: progress, challenges and potential directions. Therapeutic Delivery, 2013, 4, 615-628.	2.2	4
71	Altered biometal homeostasis is associated with CLN6 mRNA loss in mouse neuronal ceroid lipofuscinosis. Biology Open, 2013, 2, 635-646.	1.2	27
72	Mild Oxidative Stress Induces Redistribution of BACE1 in Non-Apoptotic Conditions and Promotes the Amyloidogenic Processing of Alzheimer's Disease Amyloid Precursor Protein. PLoS ONE, 2013, 8, e61246.	2.5	55

#	Article	IF	CITATIONS
73	Biometals in rare neurodegenerative disorders of childhood. Frontiers in Aging Neuroscience, 2013, 5, 14.	3.4	10
74	Neuroinflammation and Copper in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2013, 2013, 1-12.	2.0	47
75	Increased Zinc and Manganese in Parallel with Neurodegeneration, Synaptic Protein Changes and Activation of Akt/GSK3 Signaling in Ovine CLN6 Neuronal Ceroid Lipofuscinosis. PLoS ONE, 2013, 8, e58644.	2.5	28
76	Kinase Inhibitor Screening Identifies Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3 as Potential Modulators of TDP-43 Cytosolic Accumulation during Cell Stress. PLoS ONE, 2013, 8, e67433.	2.5	50
77	An impaired mitochondrial electron transport chain increases retention of the hypoxia imaging agent diacetylbis(4-methylthiosemicarbazonato)copper ^{II} . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 47-52.	7.1	101
78	The challenges of using a copper fluorescent sensor (CS1) to track intracellular distributions of copper in neuronal and glial cells. Chemical Science, 2012, 3, 2748.	7.4	43
79	The hypoxia imaging agent Cull(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. Journal of Experimental Medicine, 2012, 209, 837-854.	8.5	151
80	Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochemistry International, 2012, 60, 415-424.	3.8	125
81	Conjugation of Transferrin to Azideâ€Modified CdSe/ZnS Core–Shell Quantum Dots using Cyclooctyne Click Chemistry. Angewandte Chemie - International Edition, 2012, 51, 10523-10527.	13.8	87
82	Copper complexes as therapeutic agents. Metallomics, 2012, 4, 127-138.	2.4	247
83	Inhibition of TDP-43 Accumulation by Bis(thiosemicarbazonato)-Copper Complexes. PLoS ONE, 2012, 7, e42277.	2.5	44
84	Therapeutic Treatment of Alzheimer's Disease Using Metal Complexing Agents. , 2012, , 106-122.		0
85	Mechanisms Controlling the Cellular Accumulation of Copper Bis(thiosemicarbazonato) Complexes. Inorganic Chemistry, 2011, 50, 9594-9605.	4.0	76
86	Subcellular localization of a fluorescent derivative of Cull(atsm) offers insight into the neuroprotective action of Cull(atsm). Metallomics, 2011, 3, 1280.	2.4	17
87	Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (Cull(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model. Journal of Biological Chemistry, 2011, 286, 44035-44044.	3.4	123
88	Copper(<scp>ii</scp>) complexes of hybrid hydroxyquinoline-thiosemicarbazone ligands: GSK3β inhibition due to intracellular delivery of copper. Dalton Transactions, 2011, 40, 1338-1347.	3.3	39
89	Metals and Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-2.	2.0	10
90	Effect of Metal Chelators on <i>γ</i> -Secretase Indicates That Calcium and Magnesium Ions Facilitate Cleavage of Alzheimer Amyloid Precursor Substrate. International Journal of Alzheimer's Disease, 2011, 2011, 1-10.	2.0	21

#	Article	IF	CITATIONS
91	Targeting Glycogen Synthase Kinase-3 <i>β</i> for Therapeutic Benefit against Oxidative Stress in Alzheimer's Disease: Involvement of the Nrf2-ARE Pathway. International Journal of Alzheimer's Disease, 2011, 2011, 1-9.	2.0	46
92	Metal Ionophore Treatment Restores Dendritic Spine Density and Synaptic Protein Levels in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2011, 6, e17669.	2.5	115
93	The Alzheimer's therapeutic PBT2 promotes amyloidâ€Î² degradation and GSK3 phosphorylation via a metal chaperone activity. Journal of Neurochemistry, 2011, 119, 220-230.	3.9	167
94	A potential copper-regulatory role for cytosolic expression of the DNA repair protein XRCC5. Free Radical Biology and Medicine, 2011, 51, 2060-2072.	2.9	5
95	Cell cycle arrest in cultured neuroblastoma cells exposed to a bis(thiosemicarbazonato) metal complex. BioMetals, 2011, 24, 117-133.	4.1	21
96	C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress. Molecular Neurodegeneration, 2011, 6, 57.	10.8	103
97	Water-soluble Bis(thiosemicarbazonato)copper(II) Complexes. Australian Journal of Chemistry, 2011, 64, 244.	0.9	12
98	Bis (thiosemicarbazonato) Cu-64 Complexes for Positron Emission Tomography Imaging of Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, 49-55.	2.6	70
99	Copper and zinc bis(thiosemicarbazonato) complexes with a fluorescent tag: synthesis, radiolabelling with copper-64, cell uptake and fluorescence studies. Journal of Biological Inorganic Chemistry, 2010, 15, 225-235.	2.6	36
100	Zinc induces depletion and aggregation of endogenous TDP-43. Free Radical Biology and Medicine, 2010, 48, 1152-1161.	2.9	50
101	A domain level interaction network of amyloid precursor protein and Aβ of Alzheimer's disease. Proteomics, 2010, 10, 2377-2395.	2.2	41
102	Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. Journal of Neurochemistry, 2010, 114, 440-451.	3.9	37
103	Serum matrix metalloproteinase-9 activity is dysregulated with disease progression in the mutant SOD1 transgenic mice. Neuromuscular Disorders, 2010, 20, 260-266.	0.6	27
104	Blood-Borne Amyloid-β Dimer Correlates with Clinical Markers of Alzheimer's Disease. Journal of Neuroscience, 2010, 30, 6315-6322.	3.6	70
105	Increasing Cu bioavailability inhibits Aβ oligomers and tau phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 381-386.	7.1	259
106	Membraneâ€ŧargeted strategies for modulating APP and Aβâ€mediated toxicity. Journal of Cellular and Molecular Medicine, 2009, 13, 249-261.	3.6	4
107	Restored degradation of the Alzheimer's amyloidâ€Î² peptide by targeting amyloid formation. Journal of Neurochemistry, 2009, 108, 1198-1207	3.9	85
108	Sustained Activation of Glial Cell Epidermal Growth Factor Receptor by Bis(thiosemicarbazonato) Metal Complexes Is Associated with Inhibition of Protein Tyrosine Phosphatase Activity. Journal of Medicinal Chemistry, 2009, 52, 6606-6620.	6.4	37

#	Article	IF	CITATIONS
109	Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer's disease. Molecular BioSystems, 2009, 5, 134-142.	2.9	30
110	The role of metals in modulating metalloprotease activity in the AD brain. European Biophysics Journal, 2008, 37, 315-321.	2.2	38
111	Exacerbation of Copper Toxicity in Primary Neuronal Cultures Depleted of Cellular Glutathione. Journal of Neurochemistry, 2008, 72, 2092-2098.	3.9	79
112	Investigating copperâ€regulated protein expression in Menkes fibroblasts using antibody microarrays. Proteomics, 2008, 8, 1819-1831.	2.2	8
113	Neurotoxicity from glutathione depletion is mediated by Cu-dependent p53 activation. Free Radical Biology and Medicine, 2008, 44, 44-55.	2.9	21
114	Mechanisms of Aβ mediated neurodegeneration in Alzheimer's disease. International Journal of Biochemistry and Cell Biology, 2008, 40, 181-198.	2.8	220
115	Clioquinol inhibits peroxide-mediated toxicity through up-regulation of phosphoinositol-3-kinase and inhibition of p53 activity. International Journal of Biochemistry and Cell Biology, 2008, 40, 1030-1042.	2.8	24
116	Activation of epidermal growth factor receptor by metal-ligand complexes decreases levels of extracellular amyloid beta peptide. International Journal of Biochemistry and Cell Biology, 2008, 40, 1901-1917.	2.8	26
117	Selective Intracellular Release of Copper and Zinc Ions from Bis(thiosemicarbazonato) Complexes Reduces Levels of Alzheimer Disease Amyloid-β Peptide. Journal of Biological Chemistry, 2008, 283, 4568-4577.	3.4	177
118	Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer's disease. Proceedings of the United States of America, 2008, 105, 6813-6818.	7.1	182
119	Clioquinol Promotes Cancer Cell Toxicity through Tumor Necrosis Factor α Release from Macrophages. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 360-367.	2.5	28
120	Neurotoxicity of Prion Peptides on Cultured Cerebellar Neurons. Methods in Molecular Biology, 2008, 459, 83-96.	0.9	6
121	Therapeutic Treatment of Alzheimers Disease Using Metal Complexing Agents. Recent Patents on CNS Drug Discovery, 2007, 2, 180-187.	0.9	30
122	Differential modulation of Alzheimer's disease amyloid β-peptide accumulation by diverse classes of metal ligands. Biochemical Journal, 2007, 407, 435-450.	3.7	58
123	The modulation of metal bioâ€evailability as a therapeutic strategy for the treatment of Alzheimer's disease. FEBS Journal, 2007, 274, 3775-3783.	4.7	66
124	Metal Complexing Agents for the Treatment of Alzheimer's Disease. , 2007, , 107-136.		2
125	Correlative studies support lipid peroxidation is linked to PrPres propagation as an early primary pathogenic event in prion disease. Brain Research Bulletin, 2006, 68, 346-354.	3.0	66
126	Overexpression of AÎ ² is associated with acceleration of onset of motor impairment and superoxide dismutase 1 aggregation in an amyotrophic lateral sclerosis mouse model. Aging Cell, 2006, 5, 153-165.	6.7	37

#	Article	IF	CITATIONS
127	Degradation of the Alzheimer Disease Amyloid β-Peptide by Metal-dependent Up-regulation of Metalloprotease Activity. Journal of Biological Chemistry, 2006, 281, 17670-17680.	3.4	267
128	Metal homeostasis in Alzheimer's disease. Expert Review of Neurotherapeutics, 2006, 6, 711-722.	2.8	39
129	Therapeutic treatments for Alzheimer's disease based on metal bioavailability. Drug News and Perspectives, 2006, 19, 469.	1.5	37
130	In vitro gamma-secretase cleavage of the Alzheimer's amyloid precursor protein correlates to a subset of presenilin complexes and is inhibited by zinc. FEBS Journal, 2005, 272, 5544-5557.	4.7	45
131	Peptide-Oligonucleotide Hybrids in Antisense Therapy. Mini-Reviews in Medicinal Chemistry, 2005, 5, 41-55.	2.4	12
132	Gene knockout of amyloid precursor protein and amyloid precursorâ€like proteinâ€⊋ increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. Journal of Neurochemistry, 2004, 91, 423-428.	3.9	100
133	Iron inhibits neurotoxicity induced by trace copper and biological reductants. Journal of Biological Inorganic Chemistry, 2004, 9, 269-280.	2.6	42
134	Immunotherapy as a therapeutic treatment for neurodegenerative disorders. Journal of Neurochemistry, 2004, 87, 801-808.	3.9	33
135	Acetylcholinesterase is increased in mouse neuronal and astrocyte cultures after treatment with β-amyloid peptides. Brain Research, 2003, 965, 283-286.	2.2	25
136	Diverse fibrillar peptides directly bind the Alzheimer's amyloid precursor protein and amyloid precursor-like protein 2 resulting in cellular accumulation. Brain Research, 2003, 966, 231-244.	2.2	30
137	Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. Journal of Neuroscience Research, 2003, 71, 889-897.	2.9	63
138	Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature, 2003, 422, 80-83.	27.8	457
139	Structure of the Alzheimer's Disease Amyloid Precursor Protein Copper Binding Domain. Journal of Biological Chemistry, 2003, 278, 17401-17407.	3.4	248
140	Overexpression of Alzheimer's Disease Amyloid-β Opposes the Age-dependent Elevations of Brain Copper and Iron. Journal of Biological Chemistry, 2002, 277, 44670-44676.	3.4	324
141	Metalloenzyme-like Activity of Alzheimer's Disease β-Amyloid. Journal of Biological Chemistry, 2002, 277, 40302-40308.	3.4	536
142	Evidence for a Copper-Binding Superfamily of the Amyloid Precursor Proteinâ€. Biochemistry, 2002, 41, 9310-9320.	2.5	50
143	Contrasting, Species-Dependent Modulation of Copper-Mediated Neurotoxicity by the Alzheimer's Disease Amyloid Precursor Protein. Journal of Neuroscience, 2002, 22, 365-376.	3.6	83
144	Alzheimer's disease amyloid beta and prion protein amyloidogenic peptides promote macrophage survival, DNA synthesis and enhanced proliferative response to CSF-1 (M-CSF). Brain Research, 2002, 940, 49-54.	2.2	17

#	Article	IF	CITATIONS
145	The Hydrophobic Core Sequence Modulates the Neurotoxic and Secondary Structure Properties of the Prion Peptide 106-126. Journal of Neurochemistry, 2002, 73, 1557-1565.	3.9	152
146	Isolation and growth of a cytopathic agent from multiple sclerosis brain tissue. Journal of NeuroVirology, 2002, 8, 111-121.	2.1	1
147	Copper and Zinc Binding Modulates the Aggregation and Neurotoxic Properties of the Prion Peptide PrP106â ^{~^} 126. Biochemistry, 2001, 40, 8073-8084.	2.5	264
148	Sublethal Concentrations of Prion Peptide PrP106–126 or the Amyloid Beta Peptide of Alzheimer's Disease Activates Expression of Proapoptotic Markers in Primary Cortical Neurons. Neurobiology of Disease, 2001, 8, 299-316.	4.4	66
149	Homocysteine potentiates copper―and amyloid beta peptideâ€mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer'sâ€type neurodegenerative pathways. Journal of Neurochemistry, 2001, 76, 1509-1520.	3.9	228
150	Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106-126. Journal of Neuroscience Research, 2001, 65, 565-572.	2.9	47
151	Amyloidogenicity and neurotoxicity of peptides corresponding to the helical regions of PrPC. Journal of Neuroscience Research, 2000, 62, 293-301.	2.9	53
152	The Alzheimer's Disease Amyloid Precursor Protein Modulates Copper-Induced Toxicity and Oxidative Stress in Primary Neuronal Cultures. Journal of Neuroscience, 1999, 19, 9170-9179.	3.6	213
153	Title is missing!. International Journal of Peptide Research and Therapeutics, 1999, 6, 129-134.	0.1	Ο
154	The synthesis and spectroscopic analysis of the neurotoxic prion peptide 106–126: Comparative use of manual Boc and Fmoc chemistry. International Journal of Peptide Research and Therapeutics, 1999, 6, 129-134.	0.1	10
155	Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Research, 1999, 842, 439-444.	2.2	279
156	Amyloid β. International Journal of Biochemistry and Cell Biology, 1999, 31, 885-889.	2.8	34
157	Familial Prion Disease Mutation Alters the Secondary Structure of Recombinant Mouse Prion Protein:Â Implications for the Mechanism of Prion Formationâ€. Biochemistry, 1999, 38, 3280-3284.	2.5	35
158	Prion Protein-Deficient Neurons Reveal Lower Glutathione Reductase Activity and Increased Susceptibility to Hydrogen Peroxide Toxicity. American Journal of Pathology, 1999, 155, 1723-1730.	3.8	182
159	Survival of Cultured Neurons from Amyloid Precursor Protein Knock-Out Mice against Alzheimer's Amyloid-β Toxicity and Oxidative Stress. Journal of Neuroscience, 1998, 18, 6207-6217.	3.6	90
160	Modeling the Blood–Brain Barrier to Understand Drug Delivery in Alzheimer's Disease. , 0, , 117-134.		3