
M Carmen Montesinos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8043437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyanocobalamin Ultraflexible Lipid Vesicles: Characterization and In Vitro Evaluation of Drug-Skin Depth Profiles. Pharmaceutics, 2021, 13, 418.	4.5	15
2	Annexin A2-Mediated Plasminogen Activation in Endothelial Cells Contributes to the Proangiogenic Effect of Adenosine A2A Receptors. Frontiers in Pharmacology, 2021, 12, 654104.	3.5	10
3	Activation of the Constitutive Androstane Receptor Inhibits Leukocyte Adhesiveness to Dysfunctional Endothelium. International Journal of Molecular Sciences, 2021, 22, 9267.	4.1	3
4	Improved effectiveness from individualized dosing of self-administered biologics for the treatment of moderate-to-severe psoriasis: a 5-year retrospective chart review from a Spanish University Hospital. Journal of Dermatological Treatment, 2020, 31, 370-377.	2.2	4
5	Microneedle-Based Delivery: An Overview of Current Applications and Trends. Pharmaceutics, 2020, 12, 569.	4.5	123
6	Defective Induction of COX-2 Expression by Psoriatic Fibroblasts Promotes Pro-inflammatory Activation of Macrophages. Frontiers in Immunology, 2019, 10, 536.	4.8	22
7	Adenosine A2A and A2B Receptors Differentially Modulate Keratinocyte Proliferation: Possible Deregulation in Psoriatic Epidermis. Journal of Investigative Dermatology, 2017, 137, 123-131.	0.7	24
8	Medicinal Plants and Natural Products as Potential Sources for Antiparkinson Drugs. Planta Medica, 2016, 82, 942-951.	1.3	22
9	Methodological Approach to Use Fresh and Cryopreserved Vessels as Tools to Analyze Pharmacological Modulation of the Angiogenic Growth. Journal of Cardiovascular Pharmacology, 2016, 68, 230-240.	1.9	6
10	Decreased <scp>SAPK</scp> / <scp>JNK</scp> signalling affects cytokine release and <scp>STAT</scp> 3 activation in psoriatic fibroblasts. Experimental Dermatology, 2015, 24, 800-802.	2.9	7
11	Apremilast, a novel phosphodiesterase 4 (PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors. Arthritis Research and Therapy, 2015, 17, 249.	3.5	63
12	Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator. Inflammation, 2015, 38, 2036-2041.	3.8	20
13	β-Adrenoceptors differentially regulate vascular tone and angiogenesis of rat aorta via ERK1/2 and p38. Vascular Pharmacology, 2014, 61, 80-89.	2.1	12
14	Topical application of the adenosine A _{2A} receptor agonist <scp>CGS</scp> â€21680 prevents phorbolâ€induced epidermal hyperplasia and inflammation in mice. Experimental Dermatology, 2014, 23, 555-560.	2.9	19
15	Potential antipsoriatic effect of chondroitin sulfate through inhibition of NF-ήB and STAT3 in human keratinocytes. Pharmacological Research, 2013, 70, 20-26.	7.1	18
16	NF-κB and STAT3 Inhibition as a Therapeutic Strategy in Psoriasis: In Vitro and In Vivo Effects of BTH. Journal of Investigative Dermatology, 2013, 133, 2362-2371.	0.7	85
17	Stimulation of Wound Revascularization by Adenosine Receptor Activation. , 2010, , 95-112.		2
18	Adenosine receptor agonists for promotion of dermal wound healing. Biochemical Pharmacology, 2009. 77. 1117-1124.	4.4	90

#	Article	IF	CITATIONS
19	The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5′-nucleotidase: Findings in a study of ecto-5′-nucleotidase gene–deficient mice. Arthritis and Rheumatism, 2007, 56, 1440-1445.	6.7	131
20	Suppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollate-induced peritonitis. Arthritis Research and Therapy, 2006, 8, R53.	3.5	66
21	Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis. British Journal of Pharmacology, 2006, 148, 1144-1155.	5.4	209
22	Adenosine A2A receptors in diffuse dermal fibrosis: Pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis and Rheumatism, 2006, 54, 2632-2642.	6.7	122
23	Genetically based resistance to the antiinflammatory effects of methotrexate in the air-pouch model of acute inflammation. Arthritis and Rheumatism, 2005, 52, 2567-2575.	6.7	27
24	An Interaction Between Genetic Factors and Gender Determines the Magnitude of the Inflammatory Response in the Mouse Air Pouch Model of Acute Inflammation. Inflammation, 2005, 29, 1-7.	3.8	15
25	Adenosine A2A Receptor Stimulation Increases Angiogenesis by Down-Regulating Production of the Antiangiogenic Matrix Protein Thrombospondin 1. Molecular Pharmacology, 2005, 67, 1406-1413.	2.3	369
26	Adenosine A2Areceptor occupancy stimulates expression of proteins involved in reverse cholesterol transport and inhibits foam cell formation in macrophages. Journal of Leukocyte Biology, 2004, 76, 727-734.	3.3	70
27	Adenosine A2A Receptor Activation Promotes Wound Neovascularization by Stimulating Angiogenesis and Vasculogenesis. American Journal of Pathology, 2004, 164, 1887-1892.	3.8	369
28	Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis and Rheumatism, 2003, 48, 240-247.	6.7	187
29	Th1 Cytokines Regulate Adenosine Receptors and Their Downstream Signaling Elements in Human Microvascular Endothelial Cells. Journal of Immunology, 2003, 171, 3991-3998.	0.8	126
30	Adenosine Promotes Wound Healing and Mediates Angiogenesis in Response to Tissue Injury Via Occupancy of A2A Receptors. American Journal of Pathology, 2002, 160, 2009-2018.	3.8	202
31	Synergistic Up-Regulation of Vascular Endothelial Growth Factor Expression in Murine Macrophages by Adenosine A2A Receptor Agonists and Endotoxin. American Journal of Pathology, 2002, 160, 2231-2244.	3.8	440
32	Adenosine A2A receptor agonists promote more rapid wound healing than recombinant human platelet-derived growth factor (Becaplermin gel). Inflammation, 2002, 26, 19-24.	3.8	67
33	Inflammatory Cytokines Regulate Function and Expression of Adenosine A2A Receptors in Human Monocytic THP-1 Cells. Journal of Immunology, 2001, 167, 4026-4032.	0.8	223
34	Adenosine mediates the antiinflammatory effects of methotrexate as well as its toxicities. Drug Development Research, 2001, 52, 394-396.	2.9	1
35	Immune complexes and IFN-γ decrease cholesterol 27-hydroxylase in human arterial endothelium and macrophages. Journal of Lipid Research, 2001, 42, 1913-1922.	4.2	70
36	Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: Evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis and Rheumatism, 2000. 43. 656.	6.7	171

#	Article	IF	CITATIONS
37	Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFÂB. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6377-6381.	7.1	185
38	Sites of action for future therapy: an adenosine-dependent mechanism by which aspirin retains its antiinflammatory activity in cyclooxygenase-2 and NFκB knockout mice. Osteoarthritis and Cartilage, 1999, 7, 361-363.	1.3	49
39	Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5'-nucleotidase-mediated conversion of adenine nucleotides Journal of Clinical Investigation, 1998, 101, 295-300.	8.2	241
40	Wound Healing Is Accelerated by Agonists of Adenosine A2 (Gαs-linked) Receptors. Journal of Experimental Medicine, 1997, 186, 1615-1620.	8.5	183
41	Adenosine A2 Receptor Occupancy Regulates Stimulated Neutrophil Function via Activation of a Serine/Threonine Protein Phosphatase. Journal of Biological Chemistry, 1996, 271, 17114-17118.	3.4	88
42	Antioxidant Profile of Mono-and Dihydroxylated Flavone Derivatives in Free Radical Generating Systems. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1995, 50, 552-560.	1.4	29
43	Iron-reducing and free-radical-scavenging properties of apomorphine and some related benzylisoquinolines. Free Radical Biology and Medicine, 1993, 15, 159-167.	2.9	53
44	Antioxidant Action of Benzylisoquinoline Alkaloids. Free Radical Research Communications, 1993, 18, 167-175.	1.8	26
45	Superoxide Scavenging Properties of Phenolic Acids. Planta Medica, 1991, 57, A54-A54.	1.3	3
46	Effect of Benzylisoquinoline Alkaloids on Oxygen Radicals Production. Planta Medica, 1991, 57, A49-A50.	1.3	4