
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8042907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing the Mechanism of the Baylis–Hillman Reaction by Electrospray Ionization Mass and Tandem Mass Spectrometry. Angewandte Chemie - International Edition, 2004, 43, 4330-4333.	13.8	264
2	Venturi Easy Ambient Sonic-Spray Ionization. Analytical Chemistry, 2011, 83, 1375-1380.	6.5	125
3	The Bridge Connecting Gasâ€Phase and Solution Chemistries. Angewandte Chemie - International Edition, 2011, 50, 5261-5263.	13.8	116
4	Ultrasound in Baylis–Hillman reactions with aliphatic and aromatic aldehydes: scope and limitations. Tetrahedron, 2002, 58, 7437-7447.	1.9	115
5	Dualistic Nature of the Mechanism of the Moritaâ ^{~,} Baylisâ ^{~,} Hillman Reaction Probed by Electrospray Ionization Mass Spectrometry. Journal of Organic Chemistry, 2009, 74, 3031-3037.	3.2	99
6	BrÃ,nsted Acid Catalyzed Morita–Baylis–Hillman Reaction: A New Mechanistic View for Thioureas Revealed by ESlâ€MS(/MS) Monitoring and DFT Calculations. Chemistry - A European Journal, 2009, 15, 12460-12469.	3.3	72
7	First Comprehensive Bakkane Approach:Â Stereoselective and Efficient Dichloroketene-Based Total Syntheses of (±)- and (â``)-9-Acetoxyfukinanolide, (±)- and (+)-Bakkenolide A, (â``)-Bakkenolides III, B, C, H, L, V, and X, (±)- and (â``)-Homogynolide A, (±)-Homogynolide B, and (±)-Palmosalide C. Journal of the American Chemical Society, 2002, 124, 15313-15325.	13.7	69
8	The role of ionic liquids in co-catalysis of Baylis-Hillman reaction: interception of supramolecular species via electrospray ionization mass spectrometry. Journal of Physical Organic Chemistry, 2006, 19, 731-736.	1.9	69
9	Recent advances in indoline synthesis. Tetrahedron, 2019, 75, 2063-2097.	1.9	67
10	Diastereoselectivity in heterogeneous catalytic hydrogenation of Baylis–Hillman adducts. Total synthesis of (±)-sitophilate. Tetrahedron, 2001, 57, 6901-6908.	1.9	65
11	Catalytic Asymmetric Conjugate Addition of Indolizines to α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2017, 56, 7967-7970.	13.8	64
12	Piperonal as electrophile in the Baylis-Hillman reaction. A synthesis of hydroxy-β-piperonyl-γ-butyrolactone derivative. Tetrahedron Letters, 1998, 39, 8609-8612.	1.4	53
13	Antiproliferative effect ofÂBaylis–Hillman adducts andÂaÂnew phthalide derivative onÂhuman tumor cell lines. European Journal of Medicinal Chemistry, 2006, 41, 738-744.	5.5	47
14	Palladium catalyzed Heck reaction of arenediazonium tetrafluoroborate salts with Baylis–Hillman adducts: production of α-benzyl-β-keto esters. Tetrahedron Letters, 2006, 47, 1325-1328.	1.4	45
15	Morita–Baylis–Hillman Reaction: ESI-MS(/MS) Investigation with Charge Tags and Ionic Liquid Effect Origin Revealed by DFT Calculations. Journal of Organic Chemistry, 2014, 79, 5239-5248.	3.2	45
16	An easy and stereoselective synthesis of N-Boc-dolaproine via the Baylis–Hillman reaction. Tetrahedron Letters, 2003, 44, 937-940.	1.4	44
17	Selective Hydrogenation of Indolizines: An Expeditious Approach To Derive Tetrahydroindolizines and Indolizidines from Morita–Baylis–Hillman Adducts. Journal of Organic Chemistry, 2015, 80, 2529-2538.	3.2	44
18	An approach to substituted dihydroisoquinolin-1(2H)-ones from Baylis–Hillman adducts. Tetrahedron Letters, 2003, 44, 5731-5735.	1.4	43

#	Article	IF	CITATIONS
19	Enantioselective synthesis of 2-ethyl-2,3-dihydrobenzofuran carboxylic acid, direct precursor of (+)-efaroxan, from a Baylis–Hillman adduct. Tetrahedron Letters, 2005, 46, 6477-6481.	1.4	43
20	On the mechanism of the aza-Morita–Baylis–Hillman reaction: ESI-MS interception of a unique new intermediate. Chemical Communications, 2011, 47, 6593.	4.1	43
21	Enantiocontrolled total synthesis of (+)-bakkenolide-A. Tetrahedron Letters, 1988, 29, 5661-5662.	1.4	40
22	Palladium-catalyzed carbonylative cyclization of Baylis–Hillman adducts. An efficient approach for the stereoselective synthesis of 3-alkenyl phthalides. Tetrahedron, 2006, 62, 4563-4572.	1.9	40
23	Highly diastereoselective total synthesis of the anti-tumoral agent (±)-Spisulosine (ES285) from a Morita–Baylis–Hillman adduct. Tetrahedron Letters, 2010, 51, 2597-2599.	1.4	38
24	Oxidizing Morita–Baylis–Hillman adducts towards vicinal tricarbonyl compounds. RSC Advances, 2012, 2, 3237.	3.6	37
25	An approach to the bakkanes. A short, stereocontrolled total synthesis of (.+)-bakkenolide A. Journal of Organic Chemistry, 1985, 50, 3943-3945.	3.2	34
26	AN ALTERNATIVE ROUTE TO THE SYNTHESIS OF LIGNANS INTERMEDIATES. Synthetic Communications, 2001, 31, 2127-2136.	2.1	34
27	Mechanism and synthesis of pharmacologically active quinolones from Morita–Baylis–Hillman adducts. Tetrahedron, 2010, 66, 4370-4376.	1.9	34
28	The Mechanism of Tröger's Base Formation Probed by Electrospray Ionization Mass Spectrometry. Journal of Organic Chemistry, 2007, 72, 4048-4054.	3.2	33
29	An efficient synthesis of (R)-(â^')-baclofen. Tetrahedron: Asymmetry, 1999, 10, 2113-2118.	1.8	32
30	Aqueous Morita–Baylis–Hillman Reaction of Unprotected Isatins with Cyclic Enones. Organic Letters, 2013, 15, 5838-5841.	4.6	31
31	Efficient Catalysis of Aqueous Morita–Baylis–Hillman Reactions of Cyclic Enones by a Bicyclic Imidazolyl Alcohol. European Journal of Organic Chemistry, 2012, 2012, 6861-6866.	2.4	30
32	Reação de Baylis-Hillman: uma estratégia para a preparação de intermediários multifuncionalizados para sÃntese orgânica. Quimica Nova, 2000, 23, 98-101.	0.3	29
33	Diastereoselective heterogeneous catalytic hydrogenation of Baylis–Hillman adducts. Tetrahedron Letters, 2000, 41, 2533-2536.	1.4	28
34	Improved catalysis of Morita–Baylis–Hillman reaction. The strong synergic effect using both an imidazolic ionic liquid and a temperature. Tetrahedron Letters, 2009, 50, 1184-1187.	1.4	27
35	A simple procedure for stereospecific vicinal dicarboxylation of olefins. Journal of Organic Chemistry, 1985, 50, 1972-1973.	3.2	25
36	Acyloins from Morita–Baylis–Hillman adducts: an alternative approach to the racemic total synthesis of bupropion. Tetrahedron Letters, 2008, 49, 3744-3748.	1.4	25

#	Article	IF	CITATIONS
37	A Morita–Baylis–Hillman adduct allows the diastereoselective synthesis of styryl lactones. Tetrahedron Letters, 2011, 52, 6180-6184.	1.4	25
38	An approach to oxazolidin-2-ones from the Baylis–Hillman adducts. Formal synthesis of a chloramphenicol derivative. Tetrahedron Letters, 2002, 43, 2797-2800.	1.4	24
39	Diastereoselective Synthesis of Biologically Active Cyclopenta[<i>b</i>]indoles. Journal of Organic Chemistry, 2016, 81, 6626-6639.	3.2	23
40	A synthesis of .betamethylenegammabutyrolactones Journal of Organic Chemistry, 1985, 50, 1973-1975.	3.2	21
41	Studies on the synthesis of (±)-pathylactone A, a nor-sesquiterpene lactone isolated from marine sources. Tetrahedron, 2002, 58, 1647-1656.	1.9	21
42	An alternative approach to aminodiols from Baylis-Hillman adducts: stereoselective synthesis of chloramphenicol, fluoramphenicol and thiamphenicol. Journal of the Brazilian Chemical Society, 2005, 16, 386-396.	0.6	21
43	Carbohydrate Derivative from Baylis–Hillman Adduct. An Easy and Short Synthesis of 2â€Deoxyâ€2â€Câ€methyleneâ€Dâ€erythroâ€pentonoâ€1,4â€lactone. Synthetic Communications, 2004, 34, 30)3 7- 3046.	20
44	The Baylis-Hillman Reaction with Chiral α-Amino Aldehydes under Racemization-Free Conditions. Synlett, 2006, 2006, 0435-0439.	1.8	20
45	The Morita-Baylis-Hillman Reaction: Advances and Contributions from Brazilian Chemistry. Current Organic Synthesis, 2015, 12, 830-852.	1.3	20
46	Direct approach to the bakkanes: A synthesis of (±)-homogynolide-B. Tetrahedron Letters, 1989, 30, 565-566.	1.4	19
47	Reações de organocatálise com aminas quirais: aspectos mecanÃsticos e aplicações em sÃntese orgânica. Quimica Nova, 2009, 32, 469-481.	0.3	19
48	NÃijera oxime-derived palladacycles catalyze intermolecular Heck reaction with Morita–Baylis–Hillman adducts. An improved and highly efficient synthesis of α-benzyl-β-ketoesters. Tetrahedron, 2009, 65, 7712-7717.	1.9	18
49	Can an Alcohol Act As an Acid/Base Catalyst in Water Solution? An Experimental and Theoretical Study of Imidazole Catalysis of the Aqueous Morita–Baylis–Hillman Reaction. ACS Catalysis, 2018, 8, 1703-1714.	11.2	16
50	Gerenciamentos de resÃduos quÃmicos em instituições de ensino e pesquisa. Quimica Nova, 2005, 28, 3-3.	0.3	16
51	Highly Diastereoselective Alkylation of a Pyroglutamate Derivative with an Electrophile Obtained from Indole. Synthesis of a Potential Intermediate for the Preparation of the Natural Sweetener (-)-Monatin. Synthetic Communications, 2000, 30, 2143-2159.	2.1	15
52	Simple and highly diastereoselective access to 3,4-substituted tetrahydro-1,8-naphthyridines from Morita–Baylis–Hillman adducts. Tetrahedron Letters, 2010, 51, 4988-4990.	1.4	15
53	Kinetic resolution of 5H-pyrrolo[1,2-a]imidazol-7-ol, 6,7-dihydro under continuous flow conditions: An intermediate for chiral ionic liquids synthesis. Journal of Molecular Catalysis B: Enzymatic, 2013, 91, 77-80.	1.8	15
54	A Simple and Stereoselective Synthesis of (+)-β-Piperonyl-γ-Butyrolactone. Synthetic Communications, 1998, 28, 3047-3055.	2.1	14

#	Article	IF	CITATIONS
55	Diastereoselective formation of a quaternary center in a pyroglutamate derivative. Formal synthesis of Monatin. Tetrahedron Letters, 2001, 42, 6793-6796.	1.4	14
56	Formation of substituted N-oxide hydroxyquinolines from o-nitrophenyl Baylis–Hillman adduct: a new key intermediate intercepted by ESI-(+)-MS(/MS) monitoring. Tetrahedron Letters, 2006, 47, 8427-8431.	1.4	14
57	1,1′-Carbonyldiimidazole mediates the synthesis of N-substituted imidazole derivatives from Morita–Baylis–Hillman adducts. Tetrahedron Letters, 2014, 55, 180-183.	1.4	14
58	Selective synthesis of brasilenol, a novel sesquiterpene from the sea hare Aplysia brasiliana and the red alga Laurencia obtusa. Journal of Organic Chemistry, 1986, 51, 4250-4253.	3.2	13
59	Katalytische asymmetrische konjugierte Addition von Indolizinen an α,βâ€ungesÃætigte Ketone. Angewandte Chemie, 2017, 129, 8075-8078.	2.0	13
60	BrÃ,nsted-acid-catalyzed selective Friedel–Crafts monoalkylation of isatins with indolizines in water. Organic and Biomolecular Chemistry, 2020, 18, 7330-7335.	2.8	13
61	Catalyst-Free Conjugate Addition of Indolizines to <i>In Situ</i> -Generated Oxidized Morita–Baylis–Hillman Adducts. Journal of Organic Chemistry, 2020, 85, 5438-5448.	3.2	13
62	An improved method for the regioselective synthesis of highly substituted quinolines from Morita–Baylis–Hillman adducts. Tetrahedron Letters, 2015, 56, 2871-2874.	1.4	12
63	Studies on Pumiliotoxin A Alkaloids: An Approach to Preparing the Indolizidinic Core by Intramolecular DiaÂstereoselective Nâ€Heterocyclic Carbene Catalyzed Benzoin Reaction. European Journal of Organic Chemistry, 2016, 2016, 1972-1976.	2.4	12
64	Charge Tags for Most Comprehensive ESI-MS Monitoring of Morita–Baylis–Hillman (MBH)/ <i>aza</i> -MBH Reactions: Solid Mechanistic View and the Dualistic Role of the Charge Tagged Acrylate. Journal of Organic Chemistry, 2016, 81, 1089-1098.	3.2	12
65	An asymmetric substrate-controlled Morita–Baylis–Hillman reaction as approach for the synthesis of pyrrolizidinones and pyrrolizidines. Tetrahedron, 2014, 70, 3319-3326.	1.9	11
66	Intramolecular H-Bond Is Formed in 2-Fluorophenol and 2-Fluorothiophenol, but It May Not Be the Main Pathway of the JFH Coupling Constant Transmission. Journal of Physical Chemistry A, 2019, 123, 10072-10078.	2.5	11
67	Ozonolysis of Morita–Baylis–Hillman adducts originated from aromatic aldehydes: an expeditious diastereoselective approach for the preparation of α,l²-dihydroxy-esters. Tetrahedron Letters, 2008, 49, 145-148.	1.4	10
68	Heterocycles from Morita–Baylis–Hillman adducts: synthesis of 5-oxopyrazolidines, arylidene-5-oxopyrazolidines, and oxo-2,5-dihydro-pyrazols. Tetrahedron, 2013, 69, 826-832.	1.9	10
69	Effects of novel acylhydrazones derived from 4-quinolone on the acetylcholinesterase activity and A β 42 peptide fibrils formation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1464-1470.	5.2	10
70	Intermolecular Stetter Reactions on Moritaâ€Baylisâ€Hillman Adducts: an Approach to Highly Functionalized 1,4â€Dicarbonyl Compounds. ChemistrySelect, 2017, 2, 926-930.	1.5	10
71	Palladium-Mediated Oxidative Annulation of δ-Indolyl-α,β-Unsaturated Compounds toward the Synthesis of Cyclopenta[b]indoles and Heterogeneous Hydrogenation To Access Fused Indolines. Journal of Organic Chemistry, 2019, 84, 5564-5581.	3.2	10
72	Discovery of highly potent and selective antiparasitic new oxadiazole and hydroxy-oxindole small molecule hybrids. European Journal of Medicinal Chemistry, 2020, 201, 112418.	5.5	10

#	Article	IF	CITATIONS
73	A Simple and Efficient New Approach to the Total Synthesis of (±)-4-Amino-3-(4-Chlorophenyl)-Butyric Acid (BACLOFEN). Synthetic Communications, 1997, 27, 2455-2465.	2.1	9
74	A stereoselective synthesis of Malbranicin. Tetrahedron: Asymmetry, 1997, 8, 2781-2785.	1.8	9
75	Vinyl-1,2,4-oxadiazoles Behave as Nucleophilic Partners in Morita–Baylis–Hillman Reactions. Journal of Organic Chemistry, 2018, 83, 15118-15127.	3.2	9
76	The influence of protecting groups on the diastereoselectivity of catalytic heterogeneous hydrogenation of Baylis-Hillman adducts. Arkivoc, 2003, 2003, 443-467.	0.5	9
77	An approach to the construction of the carbon skeleton of marine nor-sesquiterpenes. Total synthesis of (±)-dehalo-napalilactone. Journal of the Brazilian Chemical Society, 2001, 12, 360-367.	0.6	8
78	DFT exploration of mechanistic pathways of an aza-Morita–Baylis–Hillman reaction. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	8
79	Diastereoselective synthesis of β-piperonyl-γ-butyrolactones from morita-baylis-hillman adducts. highly efficient synthesis of (±)-yatein, (±)-podorhizol and (±)-epi-podorhizol. Journal of the Brazilian Chemical Society, 2010, 21, 2327-2339.	0.6	7
80	An easy access to halogenated and non-halogenated spiro-hexadienones. Tetrahedron Letters, 2014, 55, 5264-5267.	1.4	7
81	Morita–Baylis–Hillman adducts as building blocks of heterocycles: a simple approach to 4-substituted pyrazolones, and mechanism investigation via ESI–MS(/MS). Monatshefte Für Chemie, 2015, 146, 1557-1570.	1.8	7
82	Highly Functionalized Spirocyclohexadienones from Morita-Baylis-Hillman Adducts. Synlett, 2009, 2009, 2333-2337.	1.8	6
83	Hyphenating the curtius rearrangement with Morita-Baylis-Hillman adducts: synthesis of biologically active acyloins and vicinal aminoalcohols. Journal of the Brazilian Chemical Society, 2011, 22, 1568-1584.	0.6	6
84	Sequential Morita–Baylis–Hillman/Achmatowicz reactions: an expeditious access to pyran-3(6H)-ones with a unique substitution pattern. Tetrahedron Letters, 2015, 56, 6356-6359.	1.4	6
85	Short and Diastereoselective Total Synthesis of the Polyhydroxylated Pyrrolidine LAB-1: A Potent α-Glycosidase Inhibitor. Synthesis, 2017, 49, 4869-4875.	2.3	6
86	On the tandem Morita-Baylis-Hillman/transesterification processes. Mechanistic insights for the role of protic solvents. Journal of Molecular Structure, 2018, 1154, 83-91.	3.6	6
87	Anthelmintic activity of a nanoformulation based on thiophenes identified in Tagetes patula L. (Asteraceae) against the small ruminant nematode Haemonchus contortus. Acta Tropica, 2021, 219, 105920.	2.0	6
88	Spirocyclohexadienones as an Uncommon Scaffold for Acetylcholinesterase Inhibitory Activity. Medicinal Chemistry, 2019, 15, 373-382.	1.5	6
89	Diastereoselective Approach to Substituted Oxazolidinones from Morita–Baylis–Hillman Adducts. Synthetic Communications, 2010, 41, 227-242.	2.1	5
90	Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances. Beilstein Journal of Organic Chemistry, 2021, 17, 1565-1590.	2.2	4

#	Article	IF	CITATIONS
91	Studies toward the synthesis of Amaryllidaceae alkaloids from Morita-Baylis-Hillman adducts: a straightforward synthesis of functionalized dihydroisoquinolin-5(6H)-one core. Journal of the Brazilian Chemical Society, 2007, 18, 1415-1438.	0.6	3
92	An approach for the enantioselective synthesis of biologically active furanones from a Morita–Baylis–Hillman adduct. Tetrahedron, 2010, 66, 6749-6753.	1.9	3
93	Heck Reaction on Morita-Baylis-Hillman Adducts: Diastereoselective Synthesis of Pyrrolizidinones and Pyrrolizidines. Synlett, 2011, 2011, 2059-2063.	1.8	3
94	Diastereoselective synthesis of substituted 2-amino-1,3-propanediols from Morita-Baylis-Hillman adducts. Journal of the Brazilian Chemical Society, 2012, 23, 285-293.	0.6	3
95	Synthesis of 1,4,6-Tricarbonyl Compounds via Regioselective Gold(I)-Catalyzed Alkyne Hydration and Their Application in the Synthesis of α-Arylidene-butyrolactones. ACS Omega, 2020, 5, 8032-8045.	3.5	3
96	Synthetic cyclopenta[b]indoles exhibit antineoplastic activity by targeting microtubule dynamics in acute myeloid leukemia cells. European Journal of Pharmacology, 2021, 894, 173853.	3.5	3
97	Through space <i>J</i> _{FH} spin–spin coupling constant transmission pathways in 2-(trifluoromethyl)thiophenol: formation of unusual stabilizing bifurcated CFâ⊂HS and CFâ⊂SH interactions. Physical Chemistry Chemical Physics, 2021, 23, 9080-9088.	2.8	3
98	Diastereoselective Epoxidation of Allylic Diols Derived from Baylis-Hillman Adducts. Synthesis, 2005, 2005, 2297-2306.	2.3	2
99	Employing Small Polyfunctionalized Molecules for a Diastereoselective Synthesis of Highly Substituted Indolines. European Journal of Organic Chemistry, 2018, 2018, 3211-3223.	2.4	2
100	15N-labed glycine synthesis. Anais Da Academia Brasileira De Ciencias, 2006, 78, 441-449.	0.8	1
101	Resolução do ibuprofeno: um projeto para disciplina de quÃmica orgânica experimental. Quimica Nova, 2012, 35, 1680-1685.	0.3	1
102	A Versatile Approach to Noncoded β-Hydroxy-α-amino Esters and α-Amino Acids/Esters from Morita–Baylis–Hillman Adducts. Synthesis, 2014, 47, 113-123.	2.3	1
103	Crystal structure of methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-dibromo-8-oxo-1-oxaspiro[4.5]deca-2,6,9-triene-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1275-o1276.	0.2	1
104	Crystal structure of 3-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydrocyclopenta[<i>b</i>]indole-2-carboxylic acid. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 0395-0396.	0.5	1
105	Aza-Morita–Baylis–Hillman Reaction with Vinyl-oxadiazoles: An Expeditious Approach to Access New Heterocyclic Arrangements. Synlett, 2020, 31, 622-626.	1.8	1
106	Synthetic Spirocyclohexadienones as New Anti-Migratory Compounds in Triple- Negative Breast Cancer Cell Migration. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 1901-1910.	1.7	1
107	Ultrasound in Baylis—Hillman Reactions with Aliphatic and Aromatic Aldehydes: Scope and Limitations ChemInform, 2003, 34, no.	0.0	Ο
108	Origin of the Diastereoselectivity of the Heterogeneous Hydrogenation of a Substituted Indolizine. Journal of Organic Chemistry, 2020, 85, 11541-11548.	3.2	0

#	Article	IF	CITATIONS
109	Preparation of tetrahydro-1H-xanthen-1-one and chromen-1-one derivatives via a Morita-Baylis-Hillman/oxa-Michael/elimination cascade. Arkivoc, 2020, 2020, 77-88.	0.5	0
110	A Straightforward Approach to the Synthesis of Disubstituted Cyclopentenones. European Journal of Organic Chemistry, 2020, 2020, 1637-1651.	2.4	0
111	Synthesis of Oxopyrazolidine-1-carboximidamides from Morita Baylis-Hillman adducts. , 0, , .		0
112	AN APPROACH TO THE SYNTHESIS OF SUBSTITUTED CYCLOPENTENONES WITH POTENTIAL ANTI-INFLAMMATORY ACTIVITY FROM MORITA-BAYLIS-HILLMAN ADDUCT. , 0, , .		0
113	An expeditious approach to tetrahydroindolizines from Morita- Baylis-Hillman Adducts. , 0, , .		0
114	Synthesis of new biologically actived azaspiro compounds. , 0, , .		0
115	Diastereoselective synthesis of dihydroquinolines and tetrahydroquinolines from Morita Baylis-Hillman adducts. , 0, , .		0
116	Synthesis of Substituted Pyrazolones from Morita-Baylis-Hillman Adducts. , 0, , .		0
117	Crystal structure of 3-methoxycarbonyl-2-(4-methoxyphenyl)-8-oxo-1-azaspiro[4.5]deca-1,6,9-trien-1-ium-1-olate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1200-o1201.	0.2	0
118	Methyl 8-oxo-2-phenyl-1-oxaspiro[4.5]deca-2,6,9-triene-3-carboxylate. IUCrData, 2016, 1, .	0.3	0
119	TRANSESTERIFICATION REACTIONS WITH Mg0/I2 FOR THE SYNTHESIS OF SITOPHILATE, (2R*, 3S*) 1-ETHYLPROPYL-2-METHYL-3-HYDROXYPENTANOATE, AN AGGREGATION PHEROMONE FOR SITOPHILUS GRANARIUS LINNAEUS, 1785 (COLEOPTERA: CURCULIONIDAE). Holos, 0, 4, 130.	0.0	0

8