Xiaoming Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8040440/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facet-induced coordination competition for highly ordered CsPbBr3 nanoplatelets with strong polarized emission. Nano Research, 2022, 15, 502-509.	10.4	18
2	In Situ Fabrication of Cs ₃ Cu ₂ I ₅ : Tl Nanocrystal Films for High-Resolution and Ultrastable X-ray Imaging. Journal of Physical Chemistry Letters, 2022, 13, 2862-2870.	4.6	39
3	Overcoming the Anisotropic Growth Limitations of Freeâ€Standing Singleâ€Crystal Halide Perovskite Films. Angewandte Chemie - International Edition, 2021, 60, 2629-2636.	13.8	24
4	Leadâ€Free Halide Double Perovskites: Structure, Luminescence, and Applications. Small Structures, 2021, 2, 2000071.	12.0	71
5	Armor-like passivated CsPbBr ₃ quantum dots: boosted stability with hand-in-hand ligands and enhanced performance of nuclear batteries. Journal of Materials Chemistry A, 2021, 9, 8772-8781.	10.3	13
6	Micro-patterned photoalignment of CsPbBr ₃ nanowires with liquid crystal molecule composite film for polarized emission. Nanoscale, 2021, 13, 14980-14986.	5.6	10
7	One-pot synthesis of Cs ₃ Cu ₂ I ₅ nanocrystals based on thermodynamic equilibrium. Materials Chemistry Frontiers, 2021, 5, 6152-6159.	5.9	22
8	Oriented Perovskite Growth Regulation Enables Sensitive Broadband Detection and Imaging of Polarized Photons Covering 300–1050Ânm. Advanced Materials, 2021, 33, e2003852.	21.0	32
9	Polarization improvement of CsPbClBr ₂ quantum dot film by laser direct writing technology. Optics Letters, 2021, 46, 777.	3.3	3
10	Amplifying Surface Energy Difference toward Anisotropic Growth of Allâ€Inorganic Perovskite Singleâ€Crystal Wires for Highly Sensitive Photodetector. Advanced Functional Materials, 2021, 31, 2101966.	14.9	21
11	Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery. Nature Communications, 2021, 12, 3879.	12.8	76
12	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
13	Strong Polarized Photoluminescence CsPbBr ₃ Nanowire Composite Films for UV Spectral Conversion Polarization Photodetector Enhancement. ACS Applied Materials & Interfaces, 2021, 13, 36147-36156.	8.0	20
14	Nonlinear Optics in Lead Halide Perovskites: Mechanisms and Applications. ACS Photonics, 2021, 8, 113-124.	6.6	80
15	Efficient, Stable, and Tunable Cold/Warm White Light from Leadâ€Free Halide Double Perovskites Cs ₂ Zr _{1â€} <i>_x</i> Te <i>_x</i> Cl ₆ . Advanced Optical Materials, 2021, 9, 2100815.	7.3	30
16	Welding Perovskite Nanowires for Stable, Sensitive, Flexible Photodetectors. ACS Nano, 2020, 14, 2777-2787.	14.6	90
17	Singleâ€Solvent, Ligandâ€Free, Gramâ€Scale Synthesis of Cs 4 PbBr 6 Perovskite Solids with Robust Green Photoluminescence. ChemNanoMat, 2020, 6, 258-266.	2.8	11
18	Synthesis of single CsPbBr ₃ @SiO ₂ core–shell particles <i>via</i> surface activation. Journal of Materials Chemistry C, 2020, 8, 17403-17409.	5.5	36

#	Article	IF	CITATIONS
19	Allâ€Perovskite Integrated Xâ€Ray Detector with Ultrahigh Sensitivity. Advanced Optical Materials, 2020, 8, 2000273.	7.3	61
20	Charge Transfer Boosting Moisture Resistance of Seminude Perovskite Nanocrystals via Hierarchical Alumina Modulation. Journal of Physical Chemistry Letters, 2020, 11, 3159-3165.	4.6	16
21	Prediction and observation of defect-induced room-temperature ferromagnetism in halide perovskites. Journal of Semiconductors, 2020, 41, 122501.	3.7	5
22	Lattice restraint induced ultra-large bandgap widening of ZnO nanoparticles. Journal of Materials Chemistry C, 2019, 7, 8969-8974.	5.5	8
23	Interfacialâ€Tunnelingâ€Effectâ€Enhanced CsPbBr ₃ Photodetectors Featuring High Detectivity and Stability. Advanced Functional Materials, 2019, 29, 1904461.	14.9	70
24	Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites. Applied Physics Letters, 2019, 115, .	3.3	21
25	Highly Luminescent and Stable Halide Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 673-681.	17.4	129
26	CsPbBr ₃ Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification. Advanced Materials, 2019, 31, e1900767.	21.0	329
27	Surface Halogen Compensation for Robust Performance Enhancements of CsPbX ₃ Perovskite Quantum Dots. Advanced Optical Materials, 2019, 7, 1900276.	7.3	138
28	Temperature Dependent Reflectance and Ellipsometry Studies on a CsPbBr ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 10564-10570.	3.1	37
29	Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 16005-16014.	8.0	147
30	Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. New Journal of Chemistry, 2018, 42, 4603-4611.	2.8	58
31	Heterogeneous Nucleation toward Polarâ€Solventâ€Free, Fast, and Oneâ€Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. Advanced Materials Interfaces, 2018, 5, 1800010.	3.7	49
32	Boosting Two-Dimensional MoS ₂ /CsPbBr ₃ Photodetectors via Enhanced Light Absorbance and Interfacial Carrier Separation. ACS Applied Materials & Interfaces, 2018, 10, 2801-2809.	8.0	207
33	Surface Chemistry of All Inorganic Halide Perovskite Nanocrystals: Passivation Mechanism and Stability. Advanced Materials Interfaces, 2018, 5, 1701662.	3.7	230
34	Perovskite photodetectors with both visible-infrared dual-mode response and super-narrowband characteristics towards photo-communication encryption application. Nanoscale, 2018, 10, 359-365.	5.6	32
35	Switching excitonic recombination and carrier trapping in cesium lead halide perovskites by air. Communications Physics, 2018, 1, .	5.3	59
36	Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. ACS Photonics, 2018, 5, 4504-4512.	6.6	17

#	Article	IF	CITATIONS
37	Spaceâ€Confined Growth of CsPbBr ₃ Film Achieving Photodetectors with High Performance in All Figures of Merit. Advanced Functional Materials, 2018, 28, 1804394.	14.9	108
38	In Situ Passivation of PbBr ₆ ^{4–} Octahedra toward Blue Luminescent CsPbBr ₃ Nanoplatelets with Near 100% Absolute Quantum Yield. ACS Energy Letters, 2018, 3, 2030-2037.	17.4	402
39	All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small, 2017, 13, 1603996.	10.0	537
40	Constructing Fast Carrier Tracks into Flexible Perovskite Photodetectors To Greatly Improve Responsivity. ACS Nano, 2017, 11, 2015-2023.	14.6	274
41	Solutionâ€Processed Low Threshold Vertical Cavity Surface Emitting Lasers from Allâ€Inorganic Perovskite Nanocrystals. Advanced Functional Materials, 2017, 27, 1605088.	14.9	242
42	Lowâ€Voltage Photodetectors with High Responsivity Based on Solutionâ€Processed Micrometerâ€Scale Allâ€Inorganic Perovskite Nanoplatelets. Small, 2017, 13, 1700364.	10.0	119
43	Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Science China Materials, 2017, 60, 811-818.	6.3	38
44	Simple and Fast Patterning Process by Laser Direct Writing for Perovskite Quantum Dots. Advanced Materials Technologies, 2017, 2, 1700132.	5.8	55
45	Highly stable and flexible photodetector arrays based on low dimensional CsPbBr ₃ microcrystals and on-paper pencil-drawn electrodes. Journal of Materials Chemistry C, 2017, 5, 7441-7445.	5.5	51
46	Cation Exchangeâ€Induced Dimensionality Construction: From Monolayered to Multilayered 2D Single Crystal Halide Perovskites. Advanced Materials Interfaces, 2017, 4, 1700441.	3.7	38
47	Solutionâ€Grown CsPbBr ₃ /Cs ₄ PbBr ₆ Perovskite Nanocomposites: Toward Temperatureâ€Insensitive Optical Gain. Small, 2017, 13, 1701587.	10.0	134
48	Aminoâ€Mediated Anchoring Perovskite Quantum Dots for Stable and Lowâ€Threshold Random Lasing. Advanced Materials, 2017, 29, 1701185.	21.0	269
49	Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Research, 2017, 10, 1584-1594.	10.4	134
50	Healing Allâ€Inorganic Perovskite Films via Recyclable Dissolution–Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability. Advanced Functional Materials, 2016, 26, 5903-5912.	14.9	296
51	Progress of Carbon Quantum Dots in Photocatalysis Applications. Particle and Particle Systems Characterization, 2016, 33, 457-472.	2.3	172
52	Ternary Oxide Nanocrystals: Universal Laserâ€Hydrothermal Synthesis, Optoelectronic and Electrochemical Applications. Advanced Functional Materials, 2016, 26, 5051-5060.	14.9	58
53	Remedying Defects in Carbon Nitride To Improve both Photooxidation and H ₂ Generation Efficiencies. ACS Catalysis, 2016, 6, 3365-3371.	11.2	148
54	Photon Driven Transformation of Cesium Lead Halide Perovskites from Fewâ€Monolayer Nanoplatelets to Bulk Phase. Advanced Materials, 2016, 28, 10637-10643.	21.0	130

#	Article	IF	CITATIONS
55	Approaching the Theoretical Capacity of Li ₃ VO ₄ via Electrochemical Reconstruction. Advanced Materials Interfaces, 2016, 3, 1500340.	3.7	97
56	Improving Allâ€Inorganic Perovskite Photodetectors by Preferred Orientation and Plasmonic Effect. Small, 2016, 12, 5622-5632.	10.0	314
57	Rapid and High-Efficiency Laser-Alloying Formation of ZnMgO Nanocrystals. Scientific Reports, 2016, 6, 28131.	3.3	15
58	Monolayer and Fewâ€Layer Allâ€Inorganic Perovskites as a New Family of Twoâ€Dimensional Semiconductors for Printable Optoelectronic Devices. Advanced Materials, 2016, 28, 4861-4869.	21.0	614
59	CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 2435-2445.	14.9	2,055
60	Quantum Dots: CsPbX ₃ Quantum Dots for Lighting and Displays: Roomâ€Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Lightâ€Emitting Diodes (Adv.) Tj ETQo	q01 24.0 rgB)T / Øverlock 1
61	Monolayer MoS ₂ –Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. ACS Applied Materials & Interfaces, 2016, 8, 2680-2687.	8.0	191
62	Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. Nano Letters, 2016, 16, 448-453.	9.1	494
63	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.	14.9	1,072
64	Quantum Dot Lightâ€Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX ₃). Advanced Materials, 2015, 27, 7162-7167.	21.0	2,457
65	Allâ€Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 2015, 27, 7101-7108.	21.0	1,095
66	Cu–N Dopants Boost Electron Transfer and Photooxidation Reactions of Carbon Dots. Angewandte Chemie - International Edition, 2015, 54, 6540-6544.	13.8	244
67	MgZnO Nanocrystals: Mechanism for Dopant‣timulated Selfâ€Assembly. Small, 2015, 11, 5097-5104.	10.0	12
68	In situ electron beam irradiation-driven formation of quantum dots. RSC Advances, 2015, 5, 25717-25722.	3.6	5
69	An insight into defect relaxation in metastable ZnO reflected by a unique luminescence and Raman evolutions. Physical Chemistry Chemical Physics, 2015, 17, 19637-19642.	2.8	22
70	Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Materials, 2015, 7, e165-e165.	7.9	177
71	Two-Dimensional, Porous Nickel–Cobalt Sulfide for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 19316-19323.	8.0	234
72	Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media. RSC Advances, 2015, 5, 79738-79745.	3.6	101

#	Article	IF	CITATIONS
73	Intercrossed Carbon Nanorings with Pure Surface States as Lowâ€Cost and Environmentâ€Friendly Phosphors for Whiteâ€Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2015, 54, 1759-1764.	13.8	238
74	Controlling oxygen vacancies and properties of ZnO. Current Applied Physics, 2014, 14, 521-527.	2.4	42
75	Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Scientific Reports, 2014, 4, .	3.3	544
76	Strong room-temperature ferromagnetism of pure ZnO nanostructure arrays via colloidal template. Journal of Materials Chemistry C, 2013, 1, 6807.	5.5	32
77	Multiexciton Generation in Semiconductor Nanocrystals: A Potential Avenue Toward Efficient Solar Cells. Science of Advanced Materials, 2013, 5, 1585-1595.	0.7	4