Sofia I R Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8039652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cueing emotional memories during slow wave sleep modulates next-day activity in the orbitofrontal cortex and the amygdala. NeuroImage, 2022, 253, 119120.	4.2	9
2	Ongoing neural oscillations predict the post-stimulus outcome of closed loop auditory stimulation during slow-wave sleep. NeuroImage, 2022, 253, 119055.	4.2	5
3	Targeted memory reactivation in REM but not SWS selectively reduces arousal responses. Communications Biology, 2021, 4, 404.	4.4	16
4	Long term effects of cueing procedural memory reactivation during NREM sleep. NeuroImage, 2021, 244, 118573.	4.2	21
5	Examining the optimal timing for closed-loop auditory stimulation of slow-wave sleep in young and older adults. Sleep, 2020, 43, .	1.1	42
6	The differing roles of NREM and REM sleep in the slow enhancement of skills and schemas. Current Opinion in Physiology, 2020, 15, 82-88.	1.8	15
7	Sleeping through brain excitation and inhibition. Nature Neuroscience, 2020, 23, 1037-1039.	14.8	7
8	Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. Sleep, 2020, 43, .	1.1	44
9	The role of slow-wave sleep rhythms in the cortical-hippocampal loop for memory consolidation. Current Opinion in Behavioral Sciences, 2020, 32, 102-110.	3.9	14
10	How Targeted Memory Reactivation Promotes theÂSelective Strengthening of Memories in Sleep. Current Biology, 2019, 29, R906-R912.	3.9	51
11	Cognition: Learning while Asleep. Current Biology, 2019, 29, R164-R166.	3.9	1
12	The nature of delayed dream incorporation (â€~dreamâ€lag effect'): Personally significant events persist, but not major daily activities or concerns. Journal of Sleep Research, 2019, 28, e12697.	3.2	12
13	How Memory Replay in Sleep Boosts Creative Problem-Solving. Trends in Cognitive Sciences, 2018, 22, 491-503.	7.8	109
14	Cued Memory Reactivation During SWS Abolishes the Beneficial Effect of Sleep on Abstraction. Sleep, 2017, 40, .	1.1	11
15	Sleep Spindle Density Predicts the Effect of Prior Knowledge on Memory Consolidation. Journal of Neuroscience, 2016, 36, 3799-3810.	3.6	96
16	Schema-conformant memories are preferentially consolidated during REM sleep. Neurobiology of Learning and Memory, 2015, 122, 41-50.	1.9	65
17	The dream-lag effect: Selective processing of personally significant events during Rapid Eye Movement sleep, but not during Slow Wave Sleep. Neurobiology of Learning and Memory, 2015, 122, 98-109.	1.9	60
18	Complementary Roles of Slow-Wave Sleep and Rapid Eye Movement Sleep in Emotional Memory Consolidation. Cerebral Cortex, 2015, 25, 1565-1575.	2.9	97

SOFIA I R PEREIRA

#	Article	IF	CITATIONS
19	Cued Memory Reactivation during Slow-Wave Sleep Promotes Explicit Knowledge of a Motor Sequence. Journal of Neuroscience, 2014, 34, 15870-15876.	3.6	80
20	Sleep spindles provide indirect support to the consolidation of emotional encoding contexts. Neuropsychologia, 2014, 63, 285-292.	1.6	29
21	Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations. Neuropsychologia, 2014, 63, 116-123.	1.6	10
22	Targeted Memory Reactivation During Slow Wave Sleep Facilitates Emotional Memory Consolidation. Sleep, 2014, 37, 701-707.	1.1	91
23	Overnight Consolidation Aids the Transfer of Statistical Knowledge from the Medial Temporal Lobe to the Striatum. Cerebral Cortex, 2013, 23, 2467-2478.	2.9	96
24	The Role of Sleep Spindles and Slow-Wave Activity in Integrating New Information in Semantic Memory. Journal of Neuroscience, 2013, 33, 15376-15381.	3.6	150
25	Orbital prefrontal cortex volume predicts social network size: an imaging study of individual differences in humans. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2157-2162.	2.6	143
26	Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 2011, 15, 343-351.	7.8	428
27	Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage, 2011, 57, 1624-1629.	4.2	279
28	Keeping time in your sleep: Overnight consolidation of temporal rhythm. Neuropsychologia, 2011, 49, 115-123.	1.6	33
29	Sleep-dependent consolidation of statistical learning. Neuropsychologia, 2011, 49, 1322-1331.	1.6	160
30	The impact of overnight consolidation upon memory for emotional and neutral encoding contexts. Neuropsychologia, 2011, 49, 2619-2629.	1.6	72
31	Offline consolidation of procedural skill learning is enhanced by negative emotional content. Experimental Brain Research, 2011, 208, 507-517.	1.5	20
32	Sleep and environmental context: interactive effects for memory. Experimental Brain Research, 2011, 214, 83-92.	1.5	34
33	Orbital prefrontal cortex volume correlates with social cognitive competence. Neuropsychologia, 2010, 48, 3554-3562.	1.6	117
34	The precision of temporal judgement: milliseconds, many minutes, and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1897-1905.	4.0	145
35	Vagus Nerve Stimulation for Treatment-Resistant Depression: Behavioral and Neural Effects on Encoding Negative Material. Psychosomatic Medicine, 2007, 69, 17-22.	2.0	46
36	Emotional Memory: Selective Enhancement by Sleep. Current Biology, 2007, 17, R179-R181.	3.9	31

SOFIA I R PEREIRA

#	Article	IF	CITATIONS
37	A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 2006, 71, 226-234.	1.1	162
38	Remembering the time: a continuous clock. Trends in Cognitive Sciences, 2006, 10, 401-406.	7.8	246
39	Neural Correlates of Processing Valence and Arousal in Affective Words. Cerebral Cortex, 2006, 17, 742-748.	2.9	312
40	Time Perception: Components of the Brain's Clock. Current Biology, 2005, 15, R389-R391.	3.9	12
41	Brain mechanisms for mood congruent memory facilitation. NeuroImage, 2005, 25, 1214-1223.	4.2	87
42	Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia, 2004, 42, 1301-1312.	1.6	199
43	Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Current Opinion in Neurobiology, 2003, 13, 250-255.	4.2	755
44	Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 2003, 41, 1583-1592.	1.6	391
45	Mood-dependent memory. Trends in Cognitive Sciences, 2003, 7, 431-433.	7.8	90
46	Interval timing in mice does not rely upon the circadian pacemaker. Neuroscience Letters, 2003, 348, 131-134.	2.1	41
47	Brain activity during non-automatic motor production of discrete multi-second intervals. NeuroReport, 2002, 13, 1731-1735.	1.2	37
48	Finding the timer. Trends in Cognitive Sciences, 2002, 6, 195-196.	7.8	21
49	Neuropsychology: Time Out of Mind. Current Biology, 2002, 12, R9-R11.	3.9	4