Hilmi Volkan Demir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8039545/publications.pdf

Version: 2024-02-01

544 papers 17,389 citations

14655 66 h-index 26613 107 g-index

559 all docs

559 docs citations

559 times ranked 17041 citing authors

#	Article	IF	CITATIONS
1	Ligand Exchange and Impurity Doping in 2D CdSe Nanoplatelet Thin Films and Their Applications. Advanced Electronic Materials, 2022, 8, 2100739.	5.1	7
2	Vacuum-evaporated lead halide perovskite LEDs [Invited]. Optical Materials Express, 2022, 12, 256.	3.0	6
3	Spectrally Resolved Nonlinear Optical Properties of Doped <i>Versus</i> Undoped Quasi-2D Semiconductor Nanocrystals: Copper and Silver Doping Provokes Strong Nonlinearity in Colloidal CdSe Nanoplatelets. ACS Photonics, 2022, 9, 256-267.	6.6	15
4	Engineered ultraviolet InGaN/AlGaN multiple-quantum-well structures for maximizing cathodoluminescence efficiency. AIP Advances, 2022, 12 , .	1.3	2
5	Interfacial charge and energy transfer in van der Waals heterojunctions. InformaÄnÃ-Materiály, 2022, 4, ·	17.3	48
6	Plasmon-enhanced photoresponse of single silver nanowires and their network devices. Nanoscale Horizons, 2022, 7, 396-402.	8.0	6
7	Modulating Emission Properties in a Host–Guest Colloidal Quantum Well Superlattice (Advanced) Tj ETQq1 1 (0.784314 7.3	rgBT /Overloc
8	Modulating Emission Properties in a Host–Guest Colloidal Quantum Well Superlattice. Advanced Optical Materials, 2022, 10, 2101756.	7.3	4
9	Deepâ€Redâ€Emitting Colloidal Quantum Well Lightâ€Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure. Small, 2022, 18, e2106115.	10.0	15
10	Blue-Emitting CdSe Nanoplatelets Enabled by Sulfur-Alloyed Heterostructures for Light-Emitting Diodes with Low Turn-on Voltage. ACS Applied Nano Materials, 2022, 5, 1367-1376.	5.0	14
11	Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes. Cell Reports Physical Science, 2022, 3, 100860.	5.6	10
12	Bright Future of Deep-Ultraviolet Photonics: Emerging UVC Chip-Scale Light-Source Technology Platforms, Benchmarking, Challenges, and Outlook for UV Disinfection. ACS Photonics, 2022, 9, 1513-1521.	6.6	27
13	Narrow electroluminescence in bromide ligand-capped cadmium chalcogenide nanoplatelets. Applied Physics Letters, 2022, 120, .	3.3	4
14	Color Enrichment Solids of Spectrally Pure Colloidal Quantum Wells for Wide Color Span in Displays. Advanced Optical Materials, 2022, 10, .	7.3	1
15	High-Performance Deep Red Colloidal Quantum Well Light-Emitting Diodes Enabled by the Understanding of Charge Dynamics. ACS Nano, 2022, 16, 10840-10851.	14.6	21
16	Mechanosynthesis of polymer-stabilized lead bromide perovskites: insight into the formation and phase conversion of nanoparticles. Nano Research, 2021, 14, 1078-1086.	10.4	8
17	Optical Microfluidic Waveguides and Solution Lasers of Colloidal Semiconductor Quantum Wells. Advanced Materials, 2021, 33, e2007131.	21.0	19
18	Ultralow Threshold Optical Gain Enabled by Quantum Rings of Inverted Type″ CdS/CdSe Core/Crown Nanoplatelets in the Blue. Advanced Optical Materials, 2021, 9, 2002220.	7.3	16

#	Article	IF	Citations
19	Ultrahigh Green and Red Optical Gain Cross Sections from Solutions of Colloidal Quantum Well Heterostructures. Journal of Physical Chemistry Letters, 2021, 12, 2177-2182.	4.6	20
20	"Meta-atomless―architecture based on an irregular continuous fabric of coupling-tuned identical nanopillars enables highly efficient and achromatic metasurfaces. Applied Physics Letters, 2021, 118, 081105.	3.3	5
21	Solution Lasing: Optical Microfluidic Waveguides and Solution Lasers of Colloidal Semiconductor Quantum Wells (Adv. Mater. 10/2021). Advanced Materials, 2021, 33, 2170070.	21.0	2
22	Strain-Reduced Micro-LEDs Grown Directly Using Partitioned Growth. Frontiers in Chemistry, 2021, 9, 639023.	3.6	4
23	Light-Induced Paramagnetism in Colloidal Ag+-Doped CdSe Nanoplatelets. Journal of Physical Chemistry Letters, 2021, 12, 2892-2899.	4.6	17
24	Singleâ€Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal Quantum Wells in a Monolithic Microcavity. Laser and Photonics Reviews, 2021, 15, 2000479.	8.7	8
25	Colloidal Gain Media: Singleâ€Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal Quantum Wells in a Monolithic Microcavity (Laser Photonics Rev. 15(4)/2021). Laser and Photonics Reviews, 2021, 15, 2170024.	8.7	1
26	Ultraefficient Förster-Type Nonradiative Energy Transfer Enabled by the Complex Dielectric Medium with Tuned Permittivity. Journal of Physical Chemistry C, 2021, 125, 12405-12413.	3.1	1
27	Lowâ€Threshold Lasing from Copperâ€Doped CdSe Colloidal Quantum Wells. Laser and Photonics Reviews, 2021, 15, 2100034.	8.7	18
28	Onâ€Chip Mercuryâ€Free Deepâ€UV Lightâ€Emitting Sources with Ultrahigh Germicidal Efficiency. Advanced Optical Materials, 2021, 9, 2100072.	7.3	10
29	Self-Resonant Microlasers of Colloidal Quantum Wells Constructed by Direct Deep Patterning. Nano Letters, 2021, 21, 4598-4605.	9.1	21
30	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
31	High-Performance Triangular Miniaturized-LEDs for High Current and Power Density Applications. ACS Photonics, 2021, 8, 2304-2310.	6.6	7
32	Tailored Synthesis of Iron Oxide Nanocrystals for Formation of Cuboid Mesocrystals. ACS Omega, 2021, 6, 20351-20360.	3.5	3
33	Nearâ€Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasiâ€2D Colloidal Quantum Well Donors. Small, 2021, 17, e2103524.	10.0	8
34	Metal–organic frameworks protect perovskite. Nature Photonics, 2021, 15, 796-797.	31.4	3
35	Coreless Fiberâ€Based Whisperingâ€Galleryâ€Mode Assisted Lasing from Colloidal Quantum Well Solids. Advanced Functional Materials, 2020, 30, 1907417.	14.9	31
36	Two-Dimensional CdSe-Based Nanoplatelets: Their Heterostructures, Doping, Photophysical Properties, and Applications. Proceedings of the IEEE, 2020, 108, 655-675.	21.3	39

#	Article	IF	CITATIONS
37	Lightâ€Emitting Diodes: Control of LED Emission with Functional Dielectric Metasurfaces (Laser) Tj ETQq1 1 0.784	1314 rgBT 8.7	/gverlock
38	Writing chemical patterns using electrospun fibers as nanoscale inkpots for directed assembly of colloidal nanocrystals. Nanoscale, 2020, 12, 895-903.	5.6	6
39	Record High External Quantum Efficiency of 19.2% Achieved in Lightâ€Emitting Diodes of Colloidal Quantum Wells Enabled by Hotâ€Injection Shell Growth. Advanced Materials, 2020, 32, e1905824.	21.0	95
40	Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems. Nanotechnology, 2020, 31, 105201.	2.6	29
41	Control of LED Emission with Functional Dielectric Metasurfaces. Laser and Photonics Reviews, 2020, 14, 1900235.	8.7	52
42	Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media. Nano Letters, 2020, 20, 6459-6465.	9.1	40
43	Highâ€efficiency flowâ€ŧhrough induction heating. IET Power Electronics, 2020, 13, 2119-2126.	2.1	10
44	MoS ₂ Phototransistor Sensitized by Colloidal Semiconductor Quantum Wells. Advanced Optical Materials, 2020, 8, 2001198.	7.3	8
45	Optically detected magnetic resonance in CdSe/CdMnS nanoplatelets. Nanoscale, 2020, 12, 21932-21939.	5.6	10
46	Optical Gain in Ultrathin Selfâ€Assembled Bi‣ayers of Colloidal Quantum Wells Enabled by the Mode Confinement in their Highâ€Index Dielectric Waveguides. Small, 2020, 16, e2004304.	10.0	9
47	Coreâ€crown Quantum Nanoplatelets with Favorable Typeâ€l Heterojunctions Boost Charge Separation and Photocatalytic NO Oxidation on TiO ₂ . ChemCatChem, 2020, 12, 6329-6343.	3.7	16
48	Trion-Mediated Förster Resonance Energy Transfer and Optical Gating Effect in WS ₂ /hBN/MoSe ₂ Heterojunction. ACS Nano, 2020, 14, 13470-13477.	14.6	29
49	Spectrally Wide-Range-Tunable, Efficient, and Bright Colloidal Light-Emitting Diodes of Quasi-2D Nanoplatelets Enabled by Engineered Alloyed Heterostructures. Chemistry of Materials, 2020, 32, 7874-7883.	6.7	29
50	Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes. ACS Nano, 2020, 14, 7338-7346.	14.6	75
51	All-optical control of exciton flow in a colloidal quantum well complex. Light: Science and Applications, 2020, 9, 27.	16.6	21
52	CdSe/CdMnS Nanoplatelets with Bilayer Core and Magnetically Doped Shell Exhibit Switchable Excitonic Circular Polarization: Implications for Lasers and Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 3151-3156.	5.0	9
53	Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nature Communications, 2020, 11, 3305.	12.8	39
54	Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum. Nano Letters, 2020, 20, 6005-6011.	9.1	115

#	Article	IF	CITATIONS
55	Magneto-Optics of Excitons Interacting with Magnetic Ions in CdSe/CdMnS Colloidal Nanoplatelets. ACS Nano, 2020, 14, 9032-9041.	14.6	20
56	Active Nanophotonics [Scanning the Issue]. Proceedings of the IEEE, 2020, 108, 625-627.	21.3	1
57	Strong Plasmon-Wannier Mott Exciton Interaction with High Aspect Ratio Colloidal Quantum Wells. Matter, 2020, 2, 1550-1563.	10.0	18
58	Universality of dissipative self-assembly from quantum dots to human cells. Nature Physics, 2020, 16, 795-801.	16.7	39
59	(Invited) Semiconductor Nanocrystal Optoelectronics of Colloidal Quantum Wells. ECS Meeting Abstracts, 2020, MA2020-01, 1081-1081.	0.0	0
60	Nearâ€Infraredâ€Emitting Fiveâ€Monolayer Thick Copperâ€Doped CdSe Nanoplatelets. Advanced Optical Materials, 2019, 7, 1900831.	7.3	25
61	Lightâ€Emitting Diodes with Cuâ€Doped Colloidal Quantum Wells: From Ultrapure Green, Tunable Dualâ€Emission to White Light. Small, 2019, 15, 1901983.	10.0	45
62	Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells. ACS Nano, 2019, 13, 10662-10670.	14.6	71
63	Persuasive Evidence for Electron–Nuclear Coupling in Diluted Magnetic Colloidal Nanoplatelets Using Optically Detected Magnetic Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 4437-4447.	4.6	12
64	Ultrathin Highly Luminescent Twoâ€Monolayer Colloidal CdSe Nanoplatelets. Advanced Functional Materials, 2019, 29, 1901028.	14.9	56
65	Light Generation in Lead Halide Perovskite Nanocrystals: LEDs, Color Converters, Lasers, and Other Applications. Small, 2019, 15, e1902079.	10.0	81
66	Electrically control amplified spontaneous emission in colloidal quantum dots. Science Advances, 2019, 5, eaav3140.	10.3	43
67	Mutual Energy Transfer in a Binary Colloidal Quantum Well Complex. Journal of Physical Chemistry Letters, 2019, 10, 5193-5199.	4.6	13
68	Highly Stable, Nearâ€Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Heteroâ€Nanoplatelets Enabled by ZnSâ€Shell Hotâ€Injection Growth. Small, 2019, 15, e1804854.	10.0	67
69	Metrics for Light Source Design. SpringerBriefs in Applied Sciences and Technology, 2019, , 17-26.	0.4	0
70	Light Stimulus and Human Eye. SpringerBriefs in Applied Sciences and Technology, 2019, , 5-9.	0.4	0
71	How to Design Quality Light Sources With Discrete Color Components. SpringerBriefs in Applied Sciences and Technology, 2019, , 35-43.	0.4	0
72	Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd _{1â^'x} Zn _x S colloidal core/crown@alloyed-shell quantum wells. Nanoscale, 2019, 11, 301-310.	5.6	44

#	Article	IF	CITATIONS
73	Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor. Nano Letters, 2019, 19, 4297-4305.	9.1	53
74	LEDs using halide perovskite nanocrystal emitters. Nanoscale, 2019, 11, 11402-11412.	5.6	41
75	Utilizing Multiple BioMEMS Sensors to Monitor Orthopaedic Strain and Predict Bone Fracture Healing. Journal of Orthopaedic Research, 2019, 37, 1873-1880.	2.3	25
76	Luminescence of Gold Nanorod-Quantum Dots Complexes. International Journal of Nanoscience, 2019, 18, 1940002.	0.7	2
77	Broad-band polarization-insensitive all-dielectric metalens enabled by intentional off-resonance waveguiding at mid-wave infrared. Applied Physics Letters, 2019, 114, .	3.3	29
78	Future Outlook. SpringerBriefs in Applied Sciences and Technology, 2019, , 45-47.	0.4	0
79	Highly Stable Multicrown Heterostructures of Type-II Nanoplatelets for Ultralow Threshold Optical Gain. Chemistry of Materials, 2019, 31, 1818-1826.	6.7	37
80	Colorimetry for LED Lighting. SpringerBriefs in Applied Sciences and Technology, 2019, , 11-16.	0.4	0
81	Plasmon–exciton systems with high quantum yield using deterministic aluminium nanostructures with rotational symmetries. Nanoscale, 2019, 11, 20315-20323.	5.6	4
82	Impurity incorporation and exchange interactions in Co2+-doped CdSe/CdS core/shell nanoplatelets. Journal of Chemical Physics, 2019, 151, 224708.	3.0	4
83	Nonradiative Energy Transfer between Doped and Undoped Flat Semiconductor Nanocrystals of Colloidal Quasi-2D Nanoplatelets. Journal of Physical Chemistry C, 2019, 123, 1470-1476.	3.1	7
84	CdTe Quantum Dot-Functionalized P25 Titania Composite with Enhanced Photocatalytic NO ₂ Storage Selectivity under UV and Vis Irradiation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 865-879.	8.0	15
85	Color Science and Photometry for Lighting with LEDs and Semiconductor Nanocrystals. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.4	2
86	Giant Modal Gain Coefficients in Colloidal II–VI Nanoplatelets. Nano Letters, 2019, 19, 277-282.	9.1	93
87	Possible Plasmonic Acceleration of LED Modulation for Li-Fi Applications. Plasmonics, 2018, 13, 2133-2140.	3.4	19
88	Polarization-Resolved Plasmon-Modulated Emissions of Quantum Dots Coupled to Aluminum Dimers with Sub-20 nm Gaps. ACS Photonics, 2018, 5, 1566-1574.	6.6	17
89	sp–d Exchange Interactions in Wave Function Engineered Colloidal CdSe/Mn:CdS Hetero-Nanoplatelets. Nano Letters, 2018, 18, 2047-2053.	9.1	32
90	Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1457-1468.	2.8	1

#	Article	IF	Citations
91	Plasmonic enhancement of electroluminescence. AIP Advances, 2018, 8, 015324.	1.3	18
92	Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. Nanoscale, 2018, 10, 9466-9475.	5.6	43
93	A Wireless Metamaterial-Inspired Passive Rotation Sensor With Submilliradian Resolution. IEEE Sensors Journal, 2018, 18, 4482-4490.	4.7	22
94	Brightly Luminescent Cu-Zn-In-S/ZnS Core/Shell Quantum Dots in Salt Matrices. Zeitschrift Fur Physikalische Chemie, 2018, 233, 23-40.	2.8	8
95	High-efficiency all-inorganic full-colour quantum dot light-emitting diodes. Nano Energy, 2018, 46, 229-233.	16.0	52
96	Effect of Mg doping in the barriers on the electrical performance of InGaN/GaN-based light-emitting diodes. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 98, 29-32.	2.7	0
97	Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions. Chemistry of Materials, 2018, 30, 3265-3275.	6.7	51
98	Nanocrystal light-emitting diodes based on type II nanoplatelets. Nano Energy, 2018, 47, 115-122.	16.0	62
99	Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Letters, 2018, 18, 3157-3164.	9.1	199
100	Wireless deep-subwavelength metamaterial enabling sub-mm resolution magnetic resonance imaging. Sensors and Actuators A: Physical, 2018, 274, 211-219.	4.1	4
101	Highly Efficient Green Lightâ€Emitting Diodes from Allâ€Inorganic Perovskite Nanocrystals Enabled by a New Electron Transport Layer. Advanced Optical Materials, 2018, 6, 1800220.	7. 3	74
102	Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1431-1441.	2.8	11
103	A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI. Magnetic Resonance Imaging, 2018, 49, 16-24.	1.8	43
104	An inductively coupled ultraâ€ŧhin, flexible, and passive RF resonator for MRI marking and guiding purposes: Clinical feasibility. Magnetic Resonance in Medicine, 2018, 80, 361-370.	3.0	12
105	Exciton Dynamics in Colloidal Quantum-Dot LEDs under Active Device Operations. ACS Photonics, 2018, 5, 480-486.	6.6	11
106	Polarization Properties of Photoluminescence of Anisotropic Polymer Films Containing Aligned Au Nanorods and Semiconductor Nanoparticles of Various Shape. Semiconductors, 2018, 52, 2054-2056.	0.5	1
107	Wireless Monitoring of a Structural Beam to be Used for Post-Earthquake Damage Assessment. , 2018, , .		1
108	2.8µm infrared photodetectors based on PbSe colloidal quantum dot films. , 2018, , .		0

#	Article	IF	CITATIONS
109	Solvent-Assisted Surface Engineering for High-Performance All-Inorganic Perovskite Nanocrystal Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 19828-19835.	8.0	45
110	Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS ₂ . ACS Nano, 2018, 12, 8547-8554.	14.6	34
111	All-Surface Induction Heating With High Efficiency and Space Invariance Enabled by Arraying Squircle Coils in Square Lattice. IEEE Transactions on Consumer Electronics, 2018, 64, 339-347.	3.6	8
112	High-performance AlGaInP light-emitting diodes integrated on silicon through a superior quality germanium-on-insulator. Photonics Research, 2018, 6, 290.	7.0	8
113	Cd-free Cu-doped ZnInS/ZnS Core/Shell Nanocrystals: Controlled Synthesis And Photophysical Properties. Nanoscale Research Letters, 2018, 13, 182.	5 . 7	8
114	Exciton Dynamics of Colloidal Semiconductor Quantum Well Stacks. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 365-367.	0.3	0
115	Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes. Applied Physics Letters, 2017, 110, .	3.3	15
116	CdSe/CdSe _{1â€"<i>x</i>} Te _{<i>x</i>} Core/Crown Heteronanoplatelets: Tuning the Excitonic Properties without Changing the Thickness. Journal of Physical Chemistry C, 2017, 121, 4650-4658.	3.1	45
117	Development of a distance-independent wireless passive RF resonator sensor and a new telemetric measurement technique for wireless strain monitoring. Sensors and Actuators A: Physical, 2017, 255, 87-93.	4.1	13
118	Light Trapping in Inverted Organic Photovoltaics With Nanoimprinted ZnO Photonic Crystals. IEEE Journal of Photovoltaics, 2017, 7, 545-549.	2.5	18
119	Time resolved photoluminescence study of magnetic CdSe/CdMnS/CdS core/multi-shell nanoplatelets. , 2017, , .		1
120	Simple and Complex Metafluids and Metastructures with Sharp Spectral Features in a Broad Extinction Spectrum: Particle–Particle Interactions and Testing the Limits of the Beer–Lambert Law. Journal of Physical Chemistry C, 2017, 121, 2987-2997.	3.1	9
121	High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays. Applied Physics Letters, 2017, 110, .	3.3	16
122	Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets. Nanoscale, 2017, 9, 6595-6605.	5.6	18
123	Rapid Crystallization of All-Inorganic CsPbBr3 Perovskite for High-Brightness Light-Emitting Diodes. ACS Omega, 2017, 2, 2757-2764.	3.5	28
124	An Equivalent Circuit Model for Nested Split-Ring Resonators. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 3733-3743.	4.6	11
125	Alloyed Heterostructures of CdSe _{<i>x</i>} S _{1â€"<i>x</i>} Nanoplatelets with Highly Tunable Optical Gain Performance. Chemistry of Materials, 2017, 29, 4857-4865.	6.7	51
126	Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device. ACS Nano, 2017, 11, 5430-5439.	14.6	20

#	Article	IF	Citations
127	An electromagnetic sensing system incorporating multiple probes and single antenna for wireless structural health monitoring. , 2017, , .		0
128	Nearâ€Unity Emitting Copperâ€Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators. Advanced Materials, 2017, 29, 1700821.	21.0	133
129	Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots. Nano Letters, 2017, 17, 2640-2646.	9.1	83
130	Silica Nanoparticle Formation by Using Droplet-Based Microreactor. , 2017, , .		0
131	High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 5317-5324.	4.6	37
132	Highly Luminescent CB[7]â€Based Conjugated Polyrotaxanes Embedded into Crystalline Matrices. Macromolecular Materials and Engineering, 2017, 302, 1700290.	3.6	5
133	Spectral tunability and enhancement of molecular radiative emission by metal-dielectric-metal stratified plasmonic nanostructure. Applied Physics Letters, 2017, 111, 093302.	3.3	2
134	Coupling and power transfer efficiency enhancement of modular and array of planar coils using in-plane ring-shaped inner ferrites for inductive heating applications. Journal of Applied Physics, 2017, 122, 014902.	2.5	6
135	Chiral Ceramic Nanoparticles and Peptide Catalysis. Journal of the American Chemical Society, 2017, 139, 13701-13712.	13.7	110
136	High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths. Applied Physics Letters, 2017, 111, .	3.3	42
137	Magnetic Resonance Imaging Assisted by Wireless Passive Implantable Fiducial e-Markers. IEEE Access, 2017, 5, 19693-19702.	4.2	3
138	Förster-type Resonance Energy Transfer (FRET): Applications. SpringerBriefs in Applied Sciences and Technology, 2017, , 1-40.	0.4	2
139	Nonradiative Energy Transfer in Assembly of Nanostructures. SpringerBriefs in Applied Sciences and Technology, 2017, , 27-38.	0.4	0
140	Guest Editorial: Introduction to the JSTQE Issue on Semiconductor Nanocrystal Optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-3.	2.9	0
141	Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils. AIP Advances, 2017, 7, 056645.	1.3	0
142	Wavelength tuning of the spirally drawn whispering gallery mode microfiber lasers and the perspectives for sensing applications. Optics Express, 2017, 25, 2618.	3.4	10
143	High performance infrared photodetectors up to 28 µm wavelength based on lead selenide colloidal quantum dots. Optical Materials Express, 2017, 7, 2326.	3.0	32
144	Engineering Quantum Dots with Different Emission Wavelengths and Specific Fluorescence Lifetimes for Spectrally and Temporally Multiplexed Imaging of Cells. Nanotheranostics, 2017, 1, 131-140.	5.2	15

#	Article	lF	CITATIONS
145	Inverted Type-I CdS/CdSe Core/Crown colloidal quantum ring. , 2017, , .		1
146	Heterodoped Nanoparticles as Dual-Mode Contrast Agent for MRI. , 2017, , .		0
147	Applying FÃ \P rster-Type Nonradiative Energy Transfer Formalism to Nanostructures with Various Directionalities: Dipole Electric Potential of Exciton and Dielectric Environment. SpringerBriefs in Applied Sciences and Technology, 2017, , 1-8.	0.4	0
148	Förster-Type Nonradiative Energy Transfer Rates for Nanostructures with Various Dimensionalities. SpringerBriefs in Applied Sciences and Technology, 2017, , 9-25.	0.4	0
149	Anomalous Spectral Characteristics of Ultrathin sub-nm Colloidal CdSe Nanoplatelets. , 2017, , .		0
150	Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating. Sensors, 2016, 16, 363.	3.8	8
151	A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members. Sensors, 2016, 16, 496.	3.8	32
152	Colloidal nanophotonics: the emerging technology platform. Optics Express, 2016, 24, A430.	3.4	29
153	Colloidal Quantum Dots for Quality Lighting. , 2016, , .		0
154	Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots. Journal of Physical Chemistry Letters, 2016, 7, 2772-2778.	4.6	12
155	Colloidal Nanoplatelets: Plateletâ€inâ€Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets (Adv. Funct. Mater. 21/2016). Advanced Functional Materials, 2016, 26, 3554-3554.	14.9	2
156	Plateletâ€inâ€Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets. Advanced Functional Materials, 2016, 26, 3570-3579.	14.9	72
157	Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum Dots to Wells for Sensitive Noncontact Temperature Probing. Advanced Functional Materials, 2016, 26, 2891-2899.	14.9	16
158	Reconfigurable Liquid Whispering Gallery Mode Microlasers. Scientific Reports, 2016, 6, 27200.	3.3	29
159	Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets. Applied Physics Letters, 2016, 108, .	3.3	23
160	Improved performance of InGaN/GaN flip-chip light-emitting diodes through the use of robust Ni/Ag/TiW mirror contacts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 011209.	1.2	8
161	Cucurbit[7]uril-threaded fluorene–thiophene-based conjugated polyrotaxanes. RSC Advances, 2016, 6, 98109-98116.	3.6	12
162	A charge inverter for III-nitride light-emitting diodes. Applied Physics Letters, 2016, 108, 133502.	3.3	17

#	Article	IF	CITATIONS
163	On the hole accelerator for III-nitride light-emitting diodes. Applied Physics Letters, 2016, 108, .	3.3	22
164	Strongly Coupled Outer Squircle–Inner Circular Coil Architecture for Enhanced Induction Over Large Areas. IEEE Transactions on Industrial Electronics, 2016, 63, 7478-7487.	7.9	11
165	High-Stability, High-Efficiency Organic Monoliths Made of Oligomer Nanoparticles Wrapped in Organic Matrix. ACS Nano, 2016, 10, 5333-5339.	14.6	16
166	Colloidal nanocrystals for quality lighting and displays: milestones and recent developments. Nanophotonics, 2016, 5, 74-95.	6.0	70
167	Multi-Point Single-Antenna Sensing Enabled by Wireless Nested Split-Ring Resonator Sensors. IEEE Sensors Journal, 2016, 16, 7744-7752.	4.7	8
168	Colloidal Nanocrystals Embedded in Macrocrystals: Methods and Applications. Journal of Physical Chemistry Letters, 2016, 7, 4117-4123.	4.6	28
169	Magneto-optical studies of CdSe/CdMnS/CdS core/multi-shell colloidal nanoplatelets. , 2016, , .		0
170	Nearâ€Field Energy Transfer Using Nanoemitters For Optoelectronics. Advanced Functional Materials, 2016, 26, 8158-8177.	14.9	73
171	Critical role of CdSe nanoplatelets in color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. Optics Letters, 2016, 41, 2883.	3.3	8
172	Understanding and Modeling FÃ \P rster-type Resonance Energy Transfer (FRET). SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.4	20
173	Energy Transfer Review. SpringerBriefs in Applied Sciences and Technology, 2016, , 9-17.	0.4	0
174	Förster-Type Nonradiative Energy Transfer Models. SpringerBriefs in Applied Sciences and Technology, 2016, , 19-27.	0.4	5
175	Theoretical Approaches: Exciton Theory, Coulomb Interactions and Fluctuation-Dissipation Theorem. SpringerBriefs in Applied Sciences and Technology, 2016, , 41-51.	0.4	1
176	Unusual Fluorescent Properties of Stilbene Units and CdZnS/ZnS Quantum Dots Nanocomposites: Whiteâ€Light Emission in Solution versus Lightâ€Harvesting in Films. Macromolecular Chemistry and Physics, 2016, 217, 24-31.	2.2	2
177	Quantum Dot/Light-Emitting Electrochemical Cell Hybrid Device and Mechanism of Its Operation. ACS Applied Materials & Device and Mechanism of Its Operation. ACS Applied Materials & Device and Mechanism of Its Operation. ACS	8.0	41
178	Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 18021-18026.	5.6	160
179	Short History of Energy Transfer Theory Before Förster, At The Time of Förster, and After Förster. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-8.	0.4	2
180	On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 3078-3102.	1.8	17

#	Article	IF	CITATIONS
181	High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific Reports, 2016, 6, 36733.	3.3	134
182	Azimuthally Polarized, Circular Colloidal Quantum Dot Laser Beam Enabled by a Concentric Grating. ACS Photonics, 2016, 3, 2255-2261.	6.6	18
183	Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures. Scientific Reports, 2016, 6, 34086.	3.3	3
184	Noncontact Temperature Probing: Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum Dots to Wells for Sensitive Noncontact Temperature Probing (Adv. Funct.) Tj ETQq0 0	0 ngaB9T/Ov	ver z ock 10 Tf
185	Modulating Ohmic Contact Through InGa _x N _y O _z Interfacial Layer for High-Performance InGaN/GaN-Based Light-Emitting Diodes. IEEE Photonics Journal, 2016, 8, 1-8.	2.0	0
186	Multiexciton generation assisted highly photosensitive CdHgTe nanocrystal skins. Nano Energy, 2016, 26, 324-331.	16.0	5
187	An Optically Readable InGaN/GaN RRAM. IEEE Transactions on Electron Devices, 2016, 63, 2328-2333.	3.0	1
188	Fluorescent Heterodoped Nanotetrapods as Synergistically Enhancing Positive and Negative Magnetic Resonance Imaging Contrast Agents. ACS Applied Materials & Interfaces, 2016, 8, 12352-12359.	8.0	2
189	High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano, 2016, 10, 6623-6630.	14.6	347
190	Decoupling contact and mirror: an effective way to improve the reflector for flip-chip InGaN/GaN-based light-emitting diodes. Journal Physics D: Applied Physics, 2016, 49, 265106.	2.8	6
191	Temperature-Dependent Emission Kinetics of Colloidal Semiconductor Nanoplatelets Strongly Modified by Stacking. Journal of Physical Chemistry Letters, 2016, 7, 548-554.	4.6	28
192	Exciton energy recycling from ZnO defect levels: towards electrically driven hybrid quantum-dot white light-emitting-diodes. Nanoscale, 2016, 8, 5835-5841.	5.6	12
193	Colloidal Nanoplatelet/Conducting Polymer Hybrids: Excitonic and Material Properties. Journal of Physical Chemistry C, 2016, 120, 3573-3582.	3.1	11
194	Demonstration of the portability of porous microstructure architecture to indium-doped ZnO electron selective layer for enhanced light scattering in inverted organic photovoltaics. Journal of Sol-Gel Science and Technology, 2016, 78, 613-620.	2.4	7
195	Exciton dynamics in luminescent carbon nanodots: Electron–hole exchange interaction. Nano Research, 2016, 9, 549-559.	10.4	9
196	Excitonic improvement of colloidal nanocrystals in salt powder matrix for quality lighting and color enrichment. Optics Express, 2016, 24, A74.	3.4	8
197	Flexible and fragmentable tandem photosensitive nanocrystal skins. Nanoscale, 2016, 8, 4495-4503.	5.6	5
198	Background Theory. SpringerBriefs in Applied Sciences and Technology, 2016, , 29-40.	0.4	0

#	Article	IF	Citations
199	Unraveling Exciton Kinetics of Electroluminescence in Colloidal Quantum Dot LEDs. , 2016, , .		0
200	Mid-wave infrared metasurface microlensed focal plane array for optical crosstalk suppression. Optics Express, 2015, 23, 27020.	3.4	18
201	Silica Synthesis and Coating of Quantum Dots in Droplet Based Microreactors. , 2015, , .		0
202	Multicolor lasing prints. Applied Physics Letters, 2015, 107, .	3.3	47
203	Implantable microelectromechanical sensors for diagnostic monitoring and postâ€surgical prediction of bone fracture healing. Journal of Orthopaedic Research, 2015, 33, 1439-1446.	2.3	54
204	Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling highâ€Q microlasers. Laser and Photonics Reviews, 2015, 9, 507-516.	8.7	44
205	Continuously Tunable Emission in Inverted Typeâ€l CdS/CdSe Core/Crown Semiconductor Nanoplatelets. Advanced Functional Materials, 2015, 25, 4282-4289.	14.9	52
206	Electroluminescence Efficiency Enhancement in Quantum Dot Lightâ€Emitting Diodes by Embedding a Silver Nanoisland Layer. Advanced Optical Materials, 2015, 3, 1439-1445.	7.3	59
207	Semiconductor Nanocrystals: Liquid–Liquid Diffusionâ€Assisted Crystallization: A Fast and Versatile Approach Toward High Quality Mixed Quantum Dotâ€Salt Crystals (Adv. Funct. Mater. 18/2015). Advanced Functional Materials, 2015, 25, 2783-2783.	14.9	1
208	Stable Dispersion of Iodide-Capped PbSe Quantum Dots for High-Performance Low-Temperature Processed Electronics and Optoelectronics. Chemistry of Materials, 2015, 27, 4328-4337.	6.7	56
209	Flexible strain sensors based on electrostatically actuated graphene flakes. Journal of Micromechanics and Microengineering, 2015, 25, 075016.	2.6	8
210	Organic–Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics. Journal of Physical Chemistry Letters, 2015, 6, 2206-2215.	4.6	34
211	Wireless Sensing in Complex Electromagnetic Media: Construction Materials and Structural Monitoring. IEEE Sensors Journal, 2015, 15, 5545-5554.	4.7	18
212	Exciton transfer and polarized emission in colloidal quantum dot - anthracene crystals., 2015,,.		0
213	Tandem InGaN/GaN light-emitting diodes. , 2015, , .		0
214	RF displacement and strain sensing system for wireless structural health monitoring. , 2015, , .		0
215	High-efficiency high-quality street lighting with colloidal quantum dot nanophosphors. , 2015, , .		0
216	Quantum Dots: Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi-Continuous Pumping (Adv. Mater. 1/2015). Advanced Materials, 2015, 27, 168-168.	21.0	1

#	Article	IF	Citations
217	Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets. Journal of Physical Chemistry C, 2015, 119, 2177-2185.	3.1	70
218	Efficient three-color white organic light-emitting diodes with a spaced multilayer emitting structure. Applied Physics Letters, 2015, 106, .	3.3	26
219	Nonradiative energy transfer in colloidal CdSe nanoplatelet films. Nanoscale, 2015, 7, 2545-2551.	5.6	58
220	Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures. Nano Energy, 2015, 12, 419-436.	16.0	86
221	A quinoxaline based N-heteroacene interfacial layer for efficient hole-injection in quantum dot light-emitting diodes. Nanoscale, 2015, 7, 11531-11535.	5.6	22
222	Colloidal quantum-dot LEDs with a solution-processed copper oxide (CuO) hole injection layer. Organic Electronics, 2015, 26, 245-250.	2.6	53
223	Stable and efficient colour enrichment powders of nonpolar nanocrystals in LiCl. Nanoscale, 2015, 7, 17611-17616.	5.6	17
224	Implementation of graphene multilayer electrodes in quantum dot light-emitting devices. Applied Physics A: Materials Science and Processing, 2015, 120, 1197-1203.	2.3	2
225	Carbon Nanotube Driver Circuit for 6 $ ilde{A}-$ 6 Organic Light Emitting Diode Display. Scientific Reports, 2015, 5, 11755.	3.3	38
226	Macrocrystals of Colloidal Quantum Dots in Anthracene: Exciton Transfer and Polarized Emission. Journal of Physical Chemistry Letters, 2015, 6, 1767-1772.	4.6	17
227	Stable and Lowâ€Threshold Optical Gain in CdSe/CdS Quantum Dots: An Allâ€Colloidal Frequency Upâ€Converted Laser. Advanced Materials, 2015, 27, 2741-2746.	21.0	92
228	Influence of gold-silica nanoparticles on the performance of small-molecule bulk heterojunction solar cells. Organic Electronics, 2015, 22, 20-28.	2.6	20
229	Manipulating Optical Properties of ZnO/Ga:ZnO Core–Shell Nanorods Via Spatially Tailoring Electronic Bandgap. Advanced Optical Materials, 2015, 3, 1066-1071.	7.3	5
230	Highly stable and high power efficiency tandem organic light-emitting diodes with transition metal oxide-based charge generation layers. Organic Electronics, 2015, 23, 70-75.	2.6	30
231	High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Research, 2015, 8, 2317-2328.	10.4	38
232	Liquid–Liquid Diffusionâ€Assisted Crystallization: A Fast and Versatile Approach Toward High Quality Mixed Quantum Dotâ€Salt Crystals. Advanced Functional Materials, 2015, 25, 2638-2645.	14.9	52
233	Observation of polarized gain from aligned colloidal nanorods. Nanoscale, 2015, 7, 6481-6486.	5.6	24
234	Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets. ACS Nano, 2015, 9, 5041-5050.	14.6	154

#	Article	IF	Citations
235	Highly monodisperse low-magnetization magnetite nanocubes as simultaneous <i>T</i> ₁ – <i>T</i> ₂ MRI contrast agents. Nanoscale, 2015, 7, 10519-10526.	5.6	40
236	Upconversion Lasers: Stable and Lowâ€Threshold Optical Gain in CdSe/CdS Quantum Dots: An Allâ€Colloidal Frequency Upâ€Converted Laser (Adv. Mater. 17/2015). Advanced Materials, 2015, 27, 2678-2678.	21.0	2
237	Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber. Optics Express, 2015, 23, 9753.	3.4	22
238	Nonradiative recombination â€" critical in choosing quantum well number for InGaN/GaN light-emitting diodes. Optics Express, 2015, 23, A34.	3.4	25
239	Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets. Journal of Physical Chemistry C, 2015, 119, 26768-26775.	3.1	146
240	A hole modulator for InGaN/GaN light-emitting diodes. Applied Physics Letters, 2015, 106, .	3.3	19
241	Ultralow-threshold up-converted lasing in oligofluorenes with tailored strong nonlinear absorption. Journal of Materials Chemistry C, 2015, 3, 12018-12025.	5.5	20
242	Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2015, 6, 4360-4364.	4.6	482
243	Nonradiative energy transfer in a layered metal-dielectric nanostructure mediated by surface plasmons. Proceedings of SPIE, 2015, , .	0.8	1
244	Implementation of High-Quality Warm-White Light-Emitting Diodes by a Model-Experimental Feedback Approach Using Quantum Dot–Salt Mixed Crystals. ACS Applied Materials & Diterfaces, 2015, 7, 23364-23371.	8.0	48
245	Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength. Nano Letters, 2015, 15, 7458-7466.	9.1	35
246	The composition effect on the optical properties of aqueous synthesized Cu–In–S and Zn–Cu–In–S quantum dot nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 25133-25141.	2.8	71
247	Construction of multi-layered white emitting organic nanoparticles by clicking polymers. Journal of Materials Chemistry C, 2015, 3, 10277-10284.	5.5	7
248	Mn ²⁺ -Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier–Dopant Exchange Interactions. ACS Nano, 2015, 9, 12473-12479.	14.6	63
249	Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasiâ€Continuous Pumping. Advanced Materials, 2015, 27, 169-175.	21.0	127
250	Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles. Nano Research, 2015, 8, 860-869.	10.4	15
251	Nonradiative recombination — critical in choosing quantum well number for InGaN/GaN light-emitting diodes. Optics Express, 2015, 23, A31.	3.4	0
252	Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics. Optics Express, 2014, 22, A1412.	3.4	13

#	Article	IF	Citations
253	Plasmon-based photopolymerization: near-field probing, advanced photonic nanostructures and nanophotochemistry. Journal of Optics (United Kingdom), 2014, 16, 114002.	2.2	21
254	Manganese Doped Fluorescent Paramagnetic Nanocrystals for Dualâ€Modal Imaging. Small, 2014, 10, 4961-4966.	10.0	31
255	Low thermal-mass LEDs: size effect and limits. Optics Express, 2014, 22, 32200.	3.4	16
256	Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor. Sensors, 2014, 14, 19609-19621.	3.8	23
257	TiO <inf>2</inf> assisted sensitivity enhancement in photosensitive nanocrystal skins., 2014,,.		0
258	Energy-saving quality road lighting with colloidal quantum dot nanophosphors. Nanophotonics, 2014, 3, 373-381.	6.0	14
259	Anisotropic stimulated emission from aligned CdSe/CdS dot-in-rods. , 2014, , .		0
260	Advances in colloidal quantum dot distributed feedback lasers hybridized on glass membranes. , 2014, , .		1
261	Multi-photon Excited Amplified Spontaneous Emission and Lasing from CdSe/CdS/ZnS quantum dots. , 2014, , .		0
262	On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes. Optics Express, 2014, 22, 809.	3.4	6
263	On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes. Optics Express, 2014, 22, A779.	3.4	29
264	Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Optics Express, 2014, 22, 18290.	3.4	17
265	Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering. Optics Letters, 2014, 39, 2483.	3.3	38
266	Polarization self-screening in [0001] oriented InGaN/GaN light-emitting diodes for improving the electron injection efficiency. Applied Physics Letters, 2014, 104, .	3.3	31
267	An improved polymer solar cell incorporating single-wall carbon nanotubes. Journal of Modern Optics, 2014, 61, 1761-1766.	1.3	3
268	Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires. Applied Physics Letters, 2014, 105, 141116.	3.3	2
269	Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers. Applied Physics Letters, 2014, 104, .	3.3	63
270	Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods. Applied Physics Letters, 2014, 105, .	3.3	15

#	Article	IF	Citations
271	Stacking in Colloidal Nanoplatelets: Tuning Excitonic Properties. ACS Nano, 2014, 8, 12524-12533.	14.6	134
272	A hole accelerator for InGaN/GaN light-emitting diodes. Applied Physics Letters, 2014, 105, .	3.3	33
273	Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (112 \hat{A} -2) semipolar versus (0001) polar planes. Applied Physics Letters, 2014, 104, .	3.3	29
274	Low-cost, large-scale, ordered ZnO nanopillar arrays for light extraction efficiency enhancement in quantum dot light-emitting diodes. , 2014, , .		1
275	Novel optical antenna designs of comb shaped split ring architecture for NIR and MIR enhanced field localization. , 2014, , .		0
276	Low-threshold optical gain and lasing of colloidal nanoplatelets. , 2014, , .		2
277	Transition metal oxides on organic semiconductors. Organic Electronics, 2014, 15, 871-877.	2.6	30
278	Stimulated Emission and Lasing from CdSe/CdS/ZnS Coreâ€Multiâ€Shell Quantum Dots by Simultaneous Threeâ€Photon Absorption. Advanced Materials, 2014, 26, 2954-2961.	21.0	172
279	Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 2014, 9, 85-101.	11.9	270
280	Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence. Nanoscale, 2014, 6, 5592-5598.	5.6	53
281	Stable, Efficient, and All-Solution-Processed Quantum Dot Light-Emitting Diodes with Double-Sided Metal Oxide Nanoparticle Charge Transport Layers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 495-499.	8.0	66
282	Nanosecond colloidal quantum dot lasers for sensing. Optics Express, 2014, 22, 7308.	3.4	29
283	Solution Processed Tungsten Oxide Interfacial Layer for Efficient Holeâ€Injection in Quantum Dot Lightâ€Emitting Diodes. Small, 2014, 10, 247-252.	10.0	96
284	Simultaneous enhancement of electron overflow reduction and hole injection promotion by tailoring the last quantum barrier in InGaN/GaN light-emitting diodes. Applied Physics Letters, 2014, 104, .	3.3	14
285	Förster-Type Nonradiative Energy Transfer for Assemblies of Arrayed Nanostructures: Confinement Dimension vs Stacking Dimension. Journal of Physical Chemistry C, 2014, 118, 4951-4958.	3.1	28
286	Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring. Sensors, 2014, 14, 1691-1704.	3.8	45
287	Singlet and Triplet Exciton Harvesting in the Thin Films of Colloidal Quantum Dots Interfacing Phosphorescent Small Organic Molecules. Journal of Physical Chemistry C, 2014, 118, 25964-25969.	3.1	13
288	Light-Emitting Diodes: Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes (Small 2/2014). Small, 2014, 10, 246-246.	10.0	4

#	Article	IF	Citations
289	InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination. Applied Physics Letters, 2014, 105, .	3.3	29
290	Nanocrystal Skins with Exciton Funneling for Photosensing. Small, 2014, 10, 2470-2475.	10.0	15
291	Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer. ACS Photonics, 2014, 1, 377-381.	6.6	35
292	Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters. Journal of Physical Chemistry Letters, 2014, 5, 2802-2807.	4.6	41
293	Engineered Peptides for Nanohybrid Assemblies. Langmuir, 2014, 30, 2137-2143.	3.5	12
294	Photosensitivity Enhancement with TiO ₂ in Semitransparent Light-Sensitive Skins of Nanocrystal Monolayers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9023-9028.	8.0	8
295	Light Extraction Efficiency Enhancement of Colloidal Quantum Dot Lightâ€Emitting Diodes Using Largeâ€6cale Nanopillar Arrays. Advanced Functional Materials, 2014, 24, 5977-5984.	14.9	68
296	Study of exciton transfer in dense quantum dot nanocomposites. Nanoscale, 2014, 6, 11387-11394.	5.6	24
297	Highly Flexible, Electrically Driven, Top-Emitting, Quantum Dot Light-Emitting Stickers. ACS Nano, 2014, 8, 8224-8231.	14.6	135
298	Enhanced efficiency of solution-processed small-molecule solar cells upon incorporation of gold nanospheres and nanorods into organic layers. Chemical Communications, 2014, 50, 4451-4454.	4.1	25
299	Type-tunable amplified spontaneous emission from core-seeded CdSe/CdS nanorods controlled by exciton–exciton interaction. Nanoscale, 2014, 6, 8509-8514.	5.6	30
300	Plasmonic Metamaterials and Nanocomposites with the Narrow Transparency Window Effect in Broad Extinction Spectra. ACS Photonics, 2014, 1, 822-832.	6.6	16
301	On the origin of the electron blocking effect by an <i>n</i> -type AlGaN electron blocking layer. Applied Physics Letters, 2014, 104, .	3.3	28
302	Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films. Journal of Physical Chemistry Letters, 2014, 5, 2214-2218.	4.6	41
303	Tunable White-Light-Emitting Mn-Doped ZnSe Nanocrystals. ACS Applied Materials & Amp; Interfaces, 2014, 6, 3654-3660.	8.0	67
304	Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets. ACS Nano, 2014, 8, 6599-6605.	14.6	288
305	Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser and Photonics Reviews, 2014, 8, 73-93.	8.7	67
306	Plasmonic light-sensitive skins of nanocrystal monolayers. Nanotechnology, 2013, 24, 155201.	2.6	12

#	Article	IF	Citations
307	Influence of $\langle i\rangle n\langle i\rangle$ -type $\langle i\rangle$ versus p $\langle i\rangle$ -type AlGaN electron-blocking layer on InGaN/GaN multiple quantum wells light-emitting diodes. Applied Physics Letters, 2013, 103, .	3.3	23
308	Quantum Dot Light-Emitting Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Diode with Quantum Dots Inside the Hole Transporting Layers.	8.0	42
309	Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots. Applied Physics Letters, 2013, 102, .	3.3	48
310	Attractive versus Repulsive Excitonic Interactions of Colloidal Quantum Dots Control Blue- to Red-Shifting (and Non-shifting) Amplified Spontaneous Emission. Journal of Physical Chemistry Letters, 2013, 4, 4146-4152.	4.6	38
311	Evidence for Nonradiative Energy Transfer in Graphene-Oxide-Based Hybrid Structures. Journal of Physical Chemistry C, 2013, 117, 25298-25304.	3.1	19
312	p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas. Applied Physics Letters, 2013, 103, .	3.3	27
313	Morphology-Dependent Energy Transfer of Polyfluorene Nanoparticles Decorating InGaN/GaN Quantum-Well Nanopillars. Journal of Physical Chemistry C, 2013, 117, 18613-18619.	3.1	10
314	Nanocrystal LEDs with enhanced external quantum efficiency enabled by the use of phosphorescent molecules. , 2013, , .		0
315	Nanoplasmonic three-dimensional surfaces with strong surface-normal electric field enhancement. , 2013, , .		0
316	Quality LED lighting and displays using nanocrystals. , 2013, , .		0
317	AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device. Organic Electronics, 2013, 14, 3195-3200.	2.6	36
318	Biomedical and Biochemical Tools of FÃ \P rster Resonance Energy Transfer Enabled by Colloidal Quantum Dot Nanocrystals for Life Sciences. , 2013, , 531-560.		0
319	Facile Synthesis of Luminescent AglnS ₂ –ZnS Solid Solution Nanorods. Small, 2013, 9, 2689-2695.	10.0	32
320	InGaN/GaN light-emitting diode with a polarization tunnel junction. Applied Physics Letters, 2013, 102, .	3.3	89
321	On the Effect of Step-Doped Quantum Barriers in InGaN/GaN Light Emitting Diodes. Journal of Display Technology, 2013, 9, 226-233.	1.2	47
322	Observation of Biexcitons in Nanocrystal Solids in the Presence of Photocharging. ACS Nano, 2013, 7, 4799-4809.	14.6	18
323	Observation of Selective Plasmon-Exciton Coupling in Nonradiative Energy Transfer: Donor-Selective versus Acceptor-Selective Plexcitons. Nano Letters, 2013, 13, 3065-3072.	9.1	77
324	Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants. ACS Nano, 2013, 7, 5993-6000.	14.6	218

#	Article	IF	Citations
325	Bio-nanohybrids of quantum dots and photoproteins facilitating strong nonradiative energy transfer. Nanoscale, 2013, 5, 7034.	5.6	8
326	Generalized Theory of FÃ \P rster-Type Nonradiative Energy Transfer in Nanostructures with Mixed Dimensionality. Journal of Physical Chemistry C, 2013, 117, 10203-10212.	3.1	54
327	Phonon-Assisted Exciton Transfer into Silicon Using Nanoemitters: The Role of Phonons and Temperature Effects in Förster Resonance Energy Transfer. ACS Nano, 2013, 7, 10492-10501.	14.6	27
328	A Novel Bio-Microelectromechanical System for In Vivo Diagnostic Monitoring of Fracture Healing. , 2013, , .		0
329	PN-type quantum barrier for InGaN/GaN light emitting diodes. Optics Express, 2013, 21, 15676.	3.4	18
330	Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer: errata. Optics Express, 2013, 21, 17670.	3.4	3
331	Dislocation density dependent electroabsorption in epitaxial lateral overgrown InGaN/GaN quantum structures. Optics Express, 2013, 21, 1128.	3.4	1
332	Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer. Optics Express, 2013, 21, 4958.	3.4	47
333	Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement. Optics Express, 2013, 21, 23097.	3.4	9
334	Room-temperature larger-scale highly ordered nanorod imprints of ZnO film. Optics Express, 2013, 21, 26846.	3.4	5
335	Optical antenna of comb-shaped split ring architecture for increased field localization in NIR and MIR. Optics Express, 2013, 21, 29455.	3.4	4
336	Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier. Optics Letters, 2013, 38, 202.	3.3	34
337	Plasmonic nanoparticle enhanced and extended performance of Light-sensitive nanocrystal skins. Materials Research Society Symposia Proceedings, 2013, 1509, 1.	0.1	0
338	Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics, 2013, 2, 57-81.	6.0	140
339	Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots. Applied Physics Letters, 2013, 103, .	3.3	8
340	An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays. Applied Physics Letters, 2013, 102, .	3.3	18
341	Arrays of suspended plasmonic nanodiscs. , 2013, , .		0
342	Improved hole distribution in InGaN/GaN light-emitting diodes with graded thickness quantum barriers. Applied Physics Letters, 2013, 102 , .	3.3	41

#	Article	IF	Citations
343	Highly flexible, full-color, top-emitting quantum dot light-emitting diode tapes. , 2013, , .		1
344	CdSe/ZnS colloidal quantum dots for solution-processed DFB lasers. , 2013, , .		1
345	Blue- and red-shifting amplified spontaneous emission of CdSe/CdS core/shell colloidal quantum dots. , 2013, , .		0
346	Three-dimensional nanoplasmonic surfaces with strong out-of-plane electric field enhancement. , 2013, , .		0
347	Type-tuning of quasi-type-II CdSe/CdS seeded core/shell nanorods: type-I vs. type-II. , 2013, , .		0
348	Coherent Random lasing from CdSe/CdS/ZnS quantum dots. , 2013, , .		1
349	Excitonically driven quantum dot light-emitting diodes: exLEDs. , 2013, , .		0
350	Enhanced exciton transfer from the cascaded bilayer of green- and red-emitting CdTe quantum dots into bulk silicon. , $2013, $, .		0
351	Nanocrystal optoelectronics for quality lighting and displays (ID: 1780136)., 2013, , .		0
352	Nanocrystal Optoelectronics for Quality Lighting and Displays. , 2013, , .		0
353	Graded-host phosphorescent light-emitting diodes with high efficiency and reduced roll-off. AIP Advances, 2012, 2, 012192.	1.3	15
354	Power conversion and luminous efficiency performance of nanophosphor quantum dots on color-conversion LEDs for high-quality general lighting. , 2012, , .		3
355	Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes. Optics Express, 2012, 20, 3275.	3.4	34
356	Spatial angle dependent lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Optics Express, 2012, 20, 9058.	3.4	6
357	Three-dimensional study of planar optical antennas made of split-ring architecture outperforming dipole antennas for increased field localization. Optics Letters, 2012, 37, 139.	3.3	2
358	Large-area semi-transparent light-sensitive nanocrystal skins. Optics Express, 2012, 20, 25255.	3.4	14
359	High-quality InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. , 2012 , , .		1
360	Phonon-assisted nonradiative energy transfer from colloidal quantum dots to monocrystalline bulk silicon. , 2012, , .		0

#	Article	IF	Citations
361	On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer. Applied Physics Letters, 2012, 100, .	3.3	33
362	Observation of biexcitons in the presence of trions generated via sequential absorption of multiple photons in colloidal quantum dot solids. , 2012, , .		0
363	Advances in the LED Materials and Architectures for Energy-Saving Solid-State Lighting Toward "Lighting Revolution― IEEE Photonics Journal, 2012, 4, 613-619.	2.0	145
364	Strong nonradiative energy transfer from the nanopillars of quantum wells to quantum dots: Efficient excitonic color conversion for light emitting diodes. , 2012, , .		2
365	A Complementary Electrochromic Device with Highly Improved Performance Based on Brick-Like Hydrated Tungsten Trioxide Film. Journal of Nanoscience and Nanotechnology, 2012, 12, 3838-3847.	0.9	4
366	Excitonic energy transfer dynamics in hybrid organic/inorganic nanocomposites at high loading levels. , 2012, , .		0
367	Large-area (> 50 cm $\tilde{A}-$ 50 cm), freestanding, flexible, optical membranes of Cd-free nanocrystal quantum dots. , 2012, , .		0
368	Large-area semi-transparent light-sensitive nanocrystal skins., 2012,,.		0
369	Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance. Chemical Communications, 2012, 48, 365-367.	4.1	63
370	Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals. Scientific Reports, 2012, 2, 627.	3.3	28
371	Blue organic light-emitting diodes based on pyrazoline phenyl derivative. Synthetic Metals, 2012, 162, 352-355.	3.9	30
372	Colloidal Nanocrystals Embedded in Macrocrystals: Robustness, Photostability, and Color Purity. Nano Letters, 2012, 12, 5348-5354.	9.1	136
373	Reordering orbitals of semiconductor multi-shell quantum dot-quantum well heteronanocrystals. Journal of Applied Physics, 2012, 111, 023713.	2.5	25
374	A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode. Applied Physics Letters, 2012, 101, .	3.3	64
375	Excitonic enhancement of nonradiative energy transfer from a quantum well in the optical near field of energy gradient quantum dots. Applied Physics Letters, 2012, 100, 241109.	3.3	11
376	A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared. Applied Physics Letters, 2012, 101, 181112.	3.3	27
377	On the triplet distribution and its effect on an improved phosphorescent organic light-emitting diode. Applied Physics Letters, 2012, 101, 093301.	3.3	16
378	Dye-sensitized solar cell with a pair of carbon-based electrodes. Journal Physics D: Applied Physics, 2012, 45, 165103.	2.8	47

#	Article	IF	Citations
379	Fluorophore-Doped Core–Multishell Spherical Plasmonic Nanocavities: Resonant Energy Transfer toward a Loss Compensation. ACS Nano, 2012, 6, 6250-6259.	14.6	71
380	Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 4180-4185.	21.0	283
381	Large-Area (over 50 cm $\tilde{A}-$ 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots. Nano Letters, 2012, 12, 3986-3993.	9.1	104
382	Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochimica Acta, 2012, 63, 153-160.	5.2	98
383	UV-blocking ZnO nanostructure anti-reflective coatings. Optics Communications, 2012, 285, 3238-3241.	2.1	14
384	A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films. Solar Energy Materials and Solar Cells, 2012, 98, 154-160.	6.2	31
385	Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris. Nanoscale, 2011, 3, 4742.	5.6	9
386	Bifunctional highly fluorescent hollow porous microspheres made of BaMoO4 : Pr3+ nanocrystals via a template-free synthesis. Journal of Materials Chemistry, 2011, 21, 9009.	6.7	24
387	Peptide-Mediated Constructs of Quantum Dot Nanocomposites for Enzymatic Control of Nonradiative Energy Transfer. Nano Letters, 2011, 11, 1530-1539.	9.1	38
388	White-Emitting Conjugated Polymer Nanoparticles with Cross-Linked Shell for Mechanical Stability and Controllable Photometric Properties in Color-Conversion LED Applications. ACS Nano, 2011, 5, 2483-2492.	14.6	57
389	Assembly Kinetics of Nanocrystals via Peptide Hybridization. Langmuir, 2011, 27, 4867-4872.	3.5	10
390	Spatially Selective Assembly of Quantum Dot Light Emitters in an LED Using Engineered Peptides. ACS Nano, 2011, 5, 2735-2741.	14.6	26
391	Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode. Applied Physics Letters, 2011, 99, .	3.3	71
392	Europium (II)-Doped Microporous Zeolite Derivatives with Enhanced Photoluminescence by Isolating Active Luminescence Centers. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4431-4436.	8.0	43
393	Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots. ACS Nano, 2011, 5, 1328-1334.	14.6	66
394	Polarization-dependent circular Dammann grating made of azo-dye-doped liquid crystals. Applied Optics, 2011, 50, 2316.	2.1	14
395	Improved performance of organic light-emitting diodes with MoO_3 interlayer by oblique angle deposition. Optics Express, 2011, 19, 4513.	3.4	14
396	Opposite carrier dynamics and optical absorption characteristics under external electric field in nonpolar vs polar InGaN/GaN based quantum heterostructures. Optics Express, 2011, 19, 5442.	3.4	9

#	Article	IF	Citations
397	Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations. Optics Express, 2011, 19, 14200.	3.4	81
398	Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Optics Letters, 2011, 36, 1713.	3.3	68
399	Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. Optics Letters, 2011, 36, 1884.	3.3	82
400	High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots. Optics Letters, 2011, 36, 1893.	3.3	33
401	Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering: reply to comment. Optics Letters, 2011, 36, 2852.	3.3	7
402	Superior warm-white light-emitting diodes integrated with quantum dot nanophosphors for high luminous efficacy and color rendering. , 2011, , .		0
403	Material Binding Peptides for Nanotechnology. Molecules, 2011, 16, 1426-1451.	3.8	165
404	Semiconductor nanocrystals as rare-earth alternatives. Nature Photonics, 2011, 5, 126-126.	31.4	74
405	Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today, 2011, 6, 632-647.	11.9	245
406	Influence of Channel Layer Thickness on the Electrical Performances of Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors. IEEE Transactions on Electron Devices, 2011, 58, 480-485.	3.0	121
407	Morphology-Tailored Synthesis of Tungsten Trioxide (Hydrate) Thin Films and Their Photocatalytic Properties. ACS Applied Materials & Samp; Interfaces, 2011, 3, 229-236.	8.0	163
408	Geometrically distributed aperiodic circular photonic crystals with broad and isotropic photonic band gaps. Optics Communications, 2011, 284, 2239-2241.	2.1	2
409	Bright Whiteâ€Light Emitting Manganese and Copper Coâ€Doped ZnSe Quantum Dots. Angewandte Chemie - International Edition, 2011, 50, 4432-4436.	13.8	17 3
410	Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental, 2011, 105, 77-85.	20.2	25
411	RF-MEMS load sensors with enhanced Q-factor and sensitivity in a suspended architecture. Microelectronic Engineering, 2011, 88, 247-253.	2.4	7
412	Optimization of inverted tandem organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 921-926.	6.2	52
413	Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode. Journal Physics D: Applied Physics, 2011, 44, 045102.	2.8	31
414	Volumetric plasmonic resonator architecture for thin-film solar cells. Applied Physics Letters, 2011, 98, 093117.	3.3	46

#	Article	IF	Citations
415	An Indium-Free Transparent Resistive Switching Random Access Memory. IEEE Electron Device Letters, 2011, 32, 797-799.	3.9	28
416	Efficient nonradiative energy transfer from InGaN/GaN nanopillars to CdSe/ZnS core/shell nanocrystals. Applied Physics Letters, 2011, 98, .	3.3	24
417	Enhanced optical characteristics of light emitting diodes by surface plasmon of Ag nanostructures. , 2011, , .		7
418	Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties. Nanotechnology, 2011, 22, 325704.	2.6	93
419	Quantum efficiency enhancement optimization in colloidal semiconductor quantum dot solids using nonradiative energy transfer. , 2010, , .		0
420	Nonradiative resonance energy transfer directed from colloidal CdSe/ZnS quantum dots to epitaxial InGaN/GaN quantum wells for solar cells. Physica Status Solidi - Rapid Research Letters, 2010, 4, 178-180.	2.4	11
421	Nested Metamaterials for Wireless Strain Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 450-458.	2.9	93
422	Improved Inverted Organic Solar Cells With a Sol–Gel Derived Indium-Doped Zinc Oxide Buffer Layer. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1700-1706.	2.9	32
423	Tunable nano devices fabricated by controlled deposition of gold nanoparticles via focused ion beam. Microelectronic Engineering, 2010, 87, 1363-1366.	2.4	11
424	Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode. Optics Communications, 2010, 283, 3846-3849.	2.1	13
425	Volumetric plasmonic resonators for very thin organic solar cells. , 2010, , .		0
426	Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Applied Physics Letters, 2010, 97, .	3.3	13
427	Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Journal of Applied Physics, 2010, 108, 013106.	2.5	12
428	Cascading plasmonic and nonradiative energy transfer interactions by plasmon-coupling only donor or only acceptor quantum dots of the energy transfer pairs. , 2010, , .		1
429	Observation of anisotropic emission from semiconductor quantum dots in nanocomposites of metal nanoparticles. , 2010, , .		0
430	FRET-assisted organic dye molecules using in conjunction with colloidal quantum dots for bio-labelling. , 2010 , , .		0
431	Au-silica core/shell hybrid nanoparticles furnished with CdTe nanocrystals for enhanced plasmon-exciton interactions. , 2010 , , .		О
432	Observation of efficient transfer from Mott–Wannier to Frenkel excitons in a hybrid semiconductor quantum dot/polymer composite at room temperature. Applied Physics Letters, 2010, 97, .	3.3	8

#	Article	IF	Citations
433	Photovoltaic nanopillar radial junction diode architecture enhanced by integrating semiconductor quantum dot nanocrystals as light harvesters. Applied Physics Letters, 2010, 97, 093111.	3.3	20
434	Conjugated polymer nanoparticles. Nanoscale, 2010, 2, 484.	5.6	376
435	Metamaterial-based wireless RF-MEMS strain sensors. , 2010, , .		17
436	Metamaterial based telemetric strain sensing in different materials. Optics Express, 2010, 18, 5000.	3.4	52
437	Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas. Optics Express, 2010, 18, 10720.	3.4	14
438	Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering. Optics Letters, 2010, 35, 3372.	3.3	77
439	A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Optics Express, 2010, 18, 340.	3.4	141
440	Non-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymers. Optics Express, 2010, 18, 670.	3.4	29
441	Polar vs. nonpolar $InGaN/GaN$ quantum heterostructures: Opposite quantum confined electroabsorption and carrier dynamics behavior. , 2010, , .		0
442	Hydrothermally grown nanostructured WO ₃ films and their electrochromic characteristics. Journal Physics D: Applied Physics, 2010, 43, 285501.	2.8	107
443	Controlled growth and characterization of epitaxially-laterally-overgrown InGaN/GaN quantum heterostructures., 2010,,.		0
444	Non-radiative energy-transfer-driven quantum dot LEDs. , 2010, , .		0
445	Light-harvesting semiconductor quantum dot nanocrystals integrated on photovoltaic radial junction nanopillars. , 2010, , .		1
446	Development and Biocompatibility Characterization of a BioMEMS Sensor for Monitoring the Progression of Fracture Healing., 2009,,.		0
447	On-chip integrated nanowire devices with controllable nanogap for manipulation, capturing, and electrical characterization of nanoparticles. , 2009, , .		0
448	Quantum efficiency enhancement in nanocrystals using nonradiative energy transfer with optimized donor-acceptor ratio for hybrid LEDs. Applied Physics Letters, 2009, 94, 243107.	3.3	21
449	Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers. Applied Physics Letters, 2009, 94, .	3.3	41
450	Optically active bi-polymer hetero-nanoparticles. , 2009, , .		0

#	Article	IF	Citations
451	Electric field dependence of radiative recombination lifetimes in polar InGaN/GaN quantum heterostructures., 2009,,.		0
452	Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution. Applied Physics Letters, 2009, 95, 033106.	3.3	27
453	Electric field dependent radiative decay kinetics of polar InGaN/GaN quantum heterostructures at low fields. Applied Physics Letters, 2009, 94, 211107.	3.3	19
454	Quantum dot emitters integrated with smart peptides. , 2009, , .		0
455	Metamaterial-based wireless strain sensors. Applied Physics Letters, 2009, 95, .	3.3	144
456	Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes. Journal of Applied Physics, 2009, 105, .	2.5	22
457	Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting. Applied Physics Letters, 2009, 95, 151111.	3.3	19
458	Plasmon enhanced colloidal nanocrystal composites incorporating Au nanoparticles in a repeating layered architecture., 2009,,.		0
459	Architectural tuning of color chromaticity by controlled nonradiative resonance energy transfer in CdTe nanocrystal solids. , 2009, , .		0
460	Efficient migration of Mott-Wannier excitons to Frenkel excitons in hybrid organic/inorganic assembly of CdSe/ZnS nanocrystals in MDMO-PPV homopolymers. , 2009, , .		0
461	Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress. Sensors, 2009, 9, 9444-9451.	3.8	8
462	Green/Yellow Solid-State Lighting via Radiative and Nonradiative Energy Transfer Involving Colloidal Semiconductor Nanocrystals. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1163-1170.	2.9	10
463	On-Chip-Integrated Nanowire Device Platform With Controllable Nanogap for Manipulation, Capturing, and Electrical Characterization of Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1413-1419.	2.9	2
464	Implementation of high qualityâ€factor onâ€chip tuned microwave resonators at 7 GHz. Microwave and Optical Technology Letters, 2009, 51, 497-501.	1.4	6
465	Luminescence in quantum-confined cadmium selenide nanocrystals and nanorods in external electric fields. Semiconductors, 2009, 43, 1008-1016.	0.5	20
466	Flexible metamaterials for wireless strain sensing. Applied Physics Letters, 2009, 95, 181105.	3.3	94
467	Self-consistent computation of electronic and optical properties of a single exciton in a spherical quantum dot via matrix diagonalization method. Journal of Applied Physics, 2009, 106, .	2.5	51
468	Highly efficient FRET-based light-harvesting using nanocrystals. , 2009, , .		0

#	Article	IF	CITATIONS
469	Nanocrystal integrated light emitting diodes based on radiative and nonradiative energy transfer for the green gap., 2009,,.		O
470	Wavelength dependent color conversion of CdSe/ZnS core/shell nanocrystals for white LEDs. , 2009, , .		1
471	White light generating nonradiative energy transfer directly from epitaxial quantum wells colloidal nanocrystal quantum dots., 2009,,.		0
472	Design and Realization of a Fully On-Chip High-\$Q\$ Resonator at 15 GHz on Silicon. IEEE Transactions on Electron Devices, 2008, 55, 3459-3466.	3.0	12
473	White light generation by resonant nonradiative energy transfer from epitaxial InGaN/GaN quantum wells to colloidal CdSe/ZnS core/shell quantum dots. New Journal of Physics, 2008, 10, 123001.	2.9	25
474	Tuning shades of white light with multi-color quantum-dot–quantum-well emitters based on onion-like CdSe–ZnS heteronanocrystals. Nanotechnology, 2008, 19, 335203.	2.6	45
475	White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New Journal of Physics, 2008, 10, 023026.	2.9	55
476	On the origin of high quality white light emission from a hybrid organic/inorganic light emitting diode using azide functionalized polyfluorene. Journal of Materials Chemistry, 2008, 18, 3568.	6.7	64
477	Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaNâ^GaN light emitting diodes for high-quality white light generation. Applied Physics Letters, 2008, 92, .	3.3	74
478	White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode for high color rendering index. Optics Express, 2008, 16, 1115.	3.4	22
479	Onion-like (CdSe)ZnS/CdSe/ZnS quantum-dot-quantum-well heteronanocrystals for investigation of multi-color emission. Optics Express, 2008, 16, 3515.	3.4	59
480	Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV. Optics Express, 2008, 16, 3537.	3.4	35
481	Quantum efficiency enhancement in film by making nanoparticles of polyfluorene. Optics Express, 2008, 16, 13391.	3.4	25
482	Resonant nonradiative energy transfer in CdSe/ZnS core/shell nanocrystal solids enhances hybrid white light emitting diodes. Optics Express, 2008, 16, 13961.	3.4	39
483	Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index. Applied Physics Letters, 2008, 92, .	3.3	192
484	Warm white light generating nanocrystal hybridized LEDs with high color rendering index., 2008,,.		0
485	Surface-state emission enhancement in white-luminophor CdS nanocrystals using localized plasmon coupling. , 2008, , .		0
486	Experimental and computational analyses of electroabsorption in polar InGaN/GaN quantum zigzag heterostructures. , 2008, , .		0

#	Article	IF	Citations
487	How can we use nanophotonics to help in combating climate change?., 2008,,.		0
488	Nanocrystal emitters for enhanced photovoltaics in UV., 2008,,.		0
489	Increased quantum efficiency and reduced red-shift in polymer nanoparticle luminophors., 2008,,.		0
490	White light generating semiconductor nanocrystal luminophors with high photometric quality. , 2008, , .		0
491	Light-harvesting positively-charged nanocrystals for strong energy transfer to dye molecules. , 2008, , .		0
492	Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. Journal of Micromechanics and Microengineering, 2008, 18, 115017.	2.6	42
493	Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New Journal of Physics, 2008, 10, 083035.	2.9	39
494	Multi-layered CdSe/ZnS/CdSe heteronanocrystals to generate and tune white light. , 2008, , .		1
495	Comparative study of electroabsorption in InGaNâ [•] GaN quantum zigzag heterostructures with polarization-induced electric fields. Applied Physics Letters, 2008, 92, 201105.	3.3	4
496	Enhanced spontaneous emission in semiconductor nanocrystal solids using resonant energy transfer for integrated devices. , 2008, , .		0
497	Multi-material specific, targeted self-assembly of nanocrystal emitters using genetically engineered peptides on optoelectronic microchips. , 2008, , .		0
498	High Optical Efficiency of ZnO Nanoparticles., 2007,,.		3
499	Investigation of Excitonic Effects in Polar InGaN/GaN Quantum Heterostructures for Enhanced Quantum Electroabsorption in Blue. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
500	White Light Generation with Azide Functionalized Polyfluorene Hybridized on Near-UV Light Emitting Diode. , 2007, , .		0
501	Blue quantum electroabsorption modulators based on reversed quantum confined Stark effect with blueshift. Applied Physics Letters, 2007, 90, 011101.	3.3	43
502	Violet to deep-ultraviolet InGaNâ^•GaN and GaNâ^•AlGaN quantum structures for UV electroabsorption modulators. Journal of Applied Physics, 2007, 102, .	2.5	20
503	Comparative study of optically activated nanocomposites with photocatalytic TiO $<$ sub $>$ 2 $<$ /sub $>$ and ZnO nanoparticles for massive environmental decontamination. Journal of Nanophotonics, 2007, 1, 011685.	1.0	5
504	Nanocrystal-based hybrid white light generation with tunable colour parameters. Journal of Optics, 2007, 9, S419-S424.	1.5	27

#	Article	IF	CITATIONS
505	White CdS Nanoluminophore based Tunable Hybrid Light Emitting Diodes. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
506	Near-UV InGaN/GaN-based dual-operation quantum optoelectronic devices. Proceedings of SPIE, 2007, , .	0.8	0
507	Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV. Optics Express, 2007, 15, 1128.	3.4	34
508	Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity. Optics Express, 2007, 15, 14289.	3.4	75
509	Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes. Nanotechnology, 2007, 18, 405702.	2.6	46
510	White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology, 2007, 18, 065709.	2.6	209
511	Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoislands. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
512	White light generation tuned by dual hybridization of nanocrystals and conjugated polymers. New Journal of Physics, 2007, 9, 362-362.	2.9	36
513	Tunable white light generating nanocyrstal-hybridized LEDs. , 2007, , .		0
514	High-Quality White Light Generation using Dually Hybridized Nanocrystals and Conjugated Polymers. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
515	NANOCRYSTAL HYBRIDIZED WHITE LIGHT SOURCES INTEGRATED ON NEAR UV LEDS. , 2007, , .		0
516	ELECTROMODULATION OF PHOTOLUMINESCENCE FROM CdSe NANORODS FILM., 2007,,.		0
517	CdSe/ZnS core-shell nanocrystal based scintillators for enhanced detection in UV., 2006, , .		1
518	Blue InGaN/GaN-based Quantum Electroabsorption Modulators. , 2006, , .		0
519	InGaN/GaN based LEDs with electroluminescence in violet, blue, and green tuned by epitaxial growth temperature. , 2006, , .		1
520	Integrated photonic switches for nanosecond packet-switched optical wavelength conversion. Optics Express, 2006, 14, 361.	3.4	14
521	Photonic devices and systems embedded with nanocrystals. , 2006, , .		0
522	Self-aligned via and trench for metal contact in III-V semiconductor devices. Journal of Vacuum Science & Technology B, 2006, 24, 1117.	1.3	4

#	Article	IF	Citations
523	White Light Generation with CdSe/ZnS Core-Shell Nanocrystals and InGaN/GaN Light Emitting Diodes., 2006,,.		2
524	Optoelectronic switches based on diffusive conduction. Journal of Applied Physics, 2006, 100, 043107.	2.5	0
525	Size effect in optical activation of TiO2 nanoparticles in photocatalytic process. , 2006, , .		1
526	Multifunctional integrated photonic switches. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 86-96.	2.9	22
527	Intimate monolithic integration of chip-scale photonic circuits. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1255-1265.	2.9	9
528	Single ultrafast diffusive conduction based optoelectronic switch for multi-channel operation. , 2005, , .		0
529	Self-Aligning Planarization and Passivation for Integration Applications in Ill–V Semiconductor Devices. IEEE Transactions on Semiconductor Manufacturing, 2005, 18, 182-189.	1.7	16
530	Multifunctional Integrated Photonic Switches for Nanosecond Packet-Switched Wavelength Conversion., 2005,,.		1
531	High-speed optical switching based on diffusive conduction in an optical waveguide with surface-normal optical control. Journal of Applied Physics, 2004, 95, 2258-2263.	2.5	3
532	Optically controlled electroabsorption modulators for unconstrained wavelength conversion. Applied Physics Letters, 2004, 84, 469-471.	3.3	25
533	Scalable Wavelength-Converting Crossbar Switches. IEEE Photonics Technology Letters, 2004, 16, 2305-2307.	2.5	13
534	Dual-diode quantum-well modulator for C-band wavelength conversion and broadcasting. Optics Express, 2004, 12, 310.	3.4	17
535	Large-Signal Response of p-i-n Photodetectors Using Short Pulses With Small Spot Sizes. IEEE Journal of Quantum Electronics, 2004, 40, 143-151.	1.9	4
536	Novel planarization and passivation in the integration of III-V semiconductor devices., 2004, 5356, 81.		5
537	Title is missing!. Optical and Quantum Electronics, 2001, 33, 1035-1054.	3.3	15
538	Andreev-level spectroscopy and Josephson-current switching in a three-terminal Josephson junction. Physical Review B, 1998, 58, 15120-15127.	3.2	8
539	Electrically-reconfigurable integrated photonic switches. , 0, , .		1
540	Quantum confinement effects in semiconductors. , 0, , 52-91.		1

#	Article	IF	CITATIONS
541	Lighting with nanostructures., 0,, 229-277.		1
542	Emerging nanophotonics., 0,, 380-428.		0
543	Energy transfer processes. , 0, , 210-226.		2
544	Semiconductor Nanocrystal Optoelectronics: from colloidal Quantum Dots to Wells. , 0, , .		0