Sabrina Lusvarghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8039519/publications.pdf

Version: 2024-02-01

394421 454955 1,125 47 19 30 citations g-index h-index papers 59 59 59 1953 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Key Substitutions in the Spike Protein of SARS-CoV-2 Variants Can Predict Resistance to Monoclonal Antibodies, but Other Substitutions Can Modify the Effects. Journal of Virology, 2022, 96, JVI0111021.	3.4	29
2	Interaction of A3 adenosine receptor ligands with the human multidrug transporter ABCG2. European Journal of Medicinal Chemistry, 2022, 231, 114103.	5.5	3
3	PBK/TOPK inhibitor OTS964 resistance is mediated by ABCB1-dependent transport function in cancer: in vitro and in vivo study. Molecular Cancer, 2022, 21, 40.	19.2	5
4	SARS-CoV-2 BA.1 variant is neutralized by vaccine booster–elicited serum but evades most convalescent serum and therapeutic antibodies. Science Translational Medicine, 2022, 14, eabn8543.	12.4	75
5	Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Scientific Reports, 2021, 11, 1788.	3.3	17
6	OTS964, a TOPK Inhibitor, Is Susceptible to ABCG2-Mediated Drug Resistance. Frontiers in Pharmacology, 2021, 12, 620874.	3.5	8
7	Does the ATPâ€bound EQ mutant reflect the preâ€or postâ€ATP hydrolysis state in the catalytic cycle of human Pâ€glycoprotein (ABCB1)?. FEBS Letters, 2021, 595, 750-762.	2.8	6
8	Overexpression of Human ABCB1 and ABCG2 Reduces the Susceptibility of Cancer Cells to the Histone Deacetylase 6-Specific Inhibitor Citarinostat. International Journal of Molecular Sciences, 2021, 22, 2592.	4.1	9
9	The third-generation EGFR inhibitor almonertinib (HS-10296) resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biochemical Pharmacology, 2021, 188, 114516.	4.4	21
10	Use of photoimmunoconjugates to characterize ABCB1 in cancer cells. Nanophotonics, 2021, 10, 3049-3061.	6.0	4
11	Mechanistic Insights into Photodynamic Regulation of Adenosine 5′-Triphosphate-Binding Cassette Drug Transporters. ACS Pharmacology and Translational Science, 2021, 4, 1578-1587.	4.9	5
12	SARS-CoV-2 Delta Variant Displays Moderate Resistance to Neutralizing Antibodies and Spike Protein Properties of Higher Soluble ACE2 Sensitivity, Enhanced Cleavage and Fusogenic Activity. Viruses, 2021, 13, 2485.	3.3	23
13	Characterization and tissue localization of zebrafish homologs of the human ABCB1 multidrug transporter. Scientific Reports, 2021, 11, 24150.	3.3	15
14	ABC-transporter upregulation mediates resistance to the CDK7 inhibitors THZ1 and ICEC0942. Oncogene, 2020, 39, 651-663.	5.9	17
15	The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. International Journal of Molecular Sciences, 2020, 21, 238.	4.1	10
16	Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29609-29617.	7.1	28
17	BMS-599626, a Highly Selective Pan-HER Kinase Inhibitor, Antagonizes ABCG2-Mediated Drug Resistance. Cancers, 2020, 12, 2502.	3.7	11
18	Sitravatinib, a Tyrosine Kinase Inhibitor, Inhibits the Transport Function of ABCG2 and Restores Sensitivity to Chemotherapy-Resistant Cancer Cells in vitro. Frontiers in Oncology, 2020, 10, 700.	2.8	25

#	Article	IF	CITATIONS
19	Overexpression of ABCB1 and ABCG2 contributes to reduced efficacy of the PI3K/mTOR inhibitor samotolisib (LY3023414) in cancer cell lines. Biochemical Pharmacology, 2020, 180, 114137.	4.4	19
20	Tivantinib, A c-Met Inhibitor in Clinical Trials, Is Susceptible to ABCG2-Mediated Drug Resistance. Cancers, 2020, 12, 186.	3.7	33
21	Licochalcone A Selectively Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Chemotherapeutic Drugs. Journal of Natural Products, 2020, 83, 1461-1472.	3.0	25
22	Multidrug transporters: recent insights from cryo-electron microscopy-derived atomic structures and animal models. F1000Research, 2020, 9, 17.	1.6	25
23	MY-5445, a phosphodiesterase type 5 inhibitor, resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer drugs. American Journal of Cancer Research, 2020, 10, 164-178.	1.4	5
24	Avapritinib: A Selective Inhibitor of KIT and PDGFRα that Reverses ABCB1 and ABCG2-Mediated Multidrug Resistance in Cancer Cell Lines. Molecular Pharmaceutics, 2019, 16, 3040-3052.	4.6	49
25	Large-scale purification of functional human P-glycoprotein (ABCB1). Protein Expression and Purification, 2019, 159, 60-68.	1.3	18
26	Synthesis and Characterization of Bodipy-FL-Cyclosporine A as a Substrate for Multidrug Resistance-Linked P-Glycoprotein (ABCB1). Drug Metabolism and Disposition, 2019, 47, 1013-1023.	3.3	13
27	A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular Pharmacology, 2019, 96, 629-640.	2.3	22
28	The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Cancer Letters, 2019, 445, 34-44.	7.2	28
29	ATP-dependent thermostabilization of human P-glycoprotein (ABCB1) is blocked by modulators. Biochemical Journal, 2019, 476, 3737-3750.	3.7	20
30	Synthesis and characterization of BODIPYâ€FLâ€cyclosporine A as a substrate for both human and mouse multidrug resistanceâ€linked Pâ€glycoprotein. FASEB Journal, 2019, 33, 656.10.	0.5	0
31	Evidence for the critical role of transmembrane helices 1 and 7 in substrate transport by human P-glycoprotein (ABCB1). PLoS ONE, 2018, 13, e0204693.	2.5	17
32	Mapping discontinuous epitopes for MRK-16, UIC2 and 4E3 antibodies to extracellular loops 1 and 4 of human P-glycoprotein. Scientific Reports, 2018, 8, 12716.	3.3	21
33	Chemical and Biophysical Approaches for Complete Characterization of Lectin–Carbohydrate Interactions. Methods in Enzymology, 2018, 598, 3-35.	1.0	1
34	Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential. Viruses, 2016, 8, 296.	3.3	108
35	Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathogens, 2016, 12, e1005537.	4.7	51
36	Design and synthesis of small molecule-sulfotyrosine mimetics that inhibit HIV-1 entry. Bioorganic and Medicinal Chemistry, 2016, 24, 1718-1728.	3.0	7

#	Article	IF	CITATIONS
37	Binding Site Geometry and Subdomain Valency Control Effects of Neutralizing Lectins on HIV-1 Viral Particles. ACS Infectious Diseases, 2016, 2, 882-891.	3.8	20
38	Novel Biochemical Tools for Probing HIV RNA Structure. Methods in Molecular Biology, 2016, 1354, 91-117.	0.9	2
39	Glycopeptide Mimetics Recapitulate Highâ€Mannoseâ€√ype Oligosaccharide Binding and Function. Angewandte Chemie - International Edition, 2015, 54, 5603-5608.	13.8	7
40	HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opinion on Therapeutic Targets, 2015, 19, 765-783.	3.4	34
41	RNA Secondary Structure Prediction Using High-throughput SHAPE. Journal of Visualized Experiments, 2013, , e50243.	0.3	12
42	Retrotransposon Ty1 RNA contains a $5\hat{a}\in^{2}$ -terminal long-range pseudoknot required for efficient reverse transcription. Rna, 2013, 19, 320-332.	3.5	34
43	Exploring Ty1 retrotransposon RNA structure within virus-like particles. Nucleic Acids Research, 2013, 41, 463-473.	14.5	33
44	The HIV-2 Rev-response element: determining secondary structure and defining folding intermediates. Nucleic Acids Research, 2013, 41, 6637-6649.	14.5	27
45	Synthesis, stereoelectronic characterization and antiparasitic activity of new 1-benzenesulfonyl-2-methyl-1,2,3,4-tetrahydroquinolines. Bioorganic and Medicinal Chemistry, 2010, 18, 142-150.	3.0	59
46	Loop and Backbone Modifications of Peptide Nucleic Acid Improve G-Quadruplex Binding Selectivity. Journal of the American Chemical Society, 2009, 131, 18415-18424.	13.7	56
47	Refined multivalent display of bacterial spore-binding peptides. Organic and Biomolecular Chemistry, 2009, 7, 1815.	2.8	10