Jin Mo Goo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8038930/publications.pdf

Version: 2024-02-01

212 papers

12,292 citations

44069 48 h-index 30087 103 g-index

215 all docs

215 docs citations

215 times ranked 10764 citing authors

#	Article	IF	CITATIONS
1	Value of a deep learning-based algorithm for detecting Lung-RADS category 4 nodules on chest radiographs in a health checkup population: estimation of the sample size for a randomized controlled trial. European Radiology, 2022, 32, 213-222.	4.5	2
2	Definitions of Central Tumors in Radiologically Node-Negative, Early-Stage Lung Cancer for Preoperative Mediastinal Lymph Node Staging. Chest, 2022, 161, 1393-1406.	0.8	5
3	Deep Learning for Detecting Pneumothorax on Chest Radiographs after Needle Biopsy: Clinical Implementation. Radiology, 2022, 303, 433-441.	7.3	23
4	CT-defined visual emphysema in smokers with normal spirometry: association with prolonged air leak and other respiratory complications after lobectomy for lung cancer. European Radiology, 2022, 32, 4395-4404.	4. 5	1
5	Artificial intelligence system for identification of false-negative interpretations in chest radiographs. European Radiology, 2022, 32, 4468-4478.	4.5	8
6	No Prognostic Impact of Staging Brain MRI in Patients with Stage IA Non–Small Cell Lung Cancer. Radiology, 2022, 303, 632-643.	7.3	3
7	Deep Learning–Based Automatic CT Quantification of Coronavirus Disease 2019 Pneumonia: An International Collaborative Study. Journal of Computer Assisted Tomography, 2022, 46, 413-422.	0.9	3
8	Potential Overdiagnosis with CT Lung Cancer Screening in Taiwanese Female: Status in South Korea. Korean Journal of Radiology, 2022, 23, 571.	3.4	10
9	Deep Learning Prediction of Survival in Patients with Chronic Obstructive Pulmonary Disease Using Chest Radiographs. Radiology, 2022, 305, 199-208.	7.3	12
10	Deep Learning to Optimize Candidate Selection for Lung Cancer CT Screening: Advancing the 2021 USPSTF Recommendations. Radiology, 2022, 305, 209-218.	7.3	10
11	Evaluation and Management of Indeterminate Pulmonary Nodules on Chest Computed Tomography in Asymptomatic Subjects: The Principles of Nodule Guidelines. Seminars in Respiratory and Critical Care Medicine, 2022, 43, 851-861.	2.1	2
12	CT and 18F-FDG PET abnormalities in contacts with recent tuberculosis infections but negative chest X-ray. Insights Into Imaging, 2022, 13 , .	3.4	4
13	Histopathologic Basis for a Chest CT Deep Learning Survival Prediction Model in Patients with Lung Adenocarcinoma. Radiology, 2022, 305, 441-451.	7.3	10
14	Incidence, risk factors, and prognostic indicators of symptomatic air embolism after percutaneous transthoracic lung biopsy: a systematic review and pooled analysis. European Radiology, 2021, 31, 2022-2033.	4. 5	17
15	Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. European Respiratory Journal, 2021, 57, 2003061.	6.7	58
16	External validation and comparison of the Brock model and Lung-RADS for the baseline lung cancer CT screening using data from the Korean Lung Cancer Screening Project. European Radiology, 2021, 31, 4004-4015.	4. 5	5
17	Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs. European Radiology, 2021, 31, 2866-2876.	4.5	19
18	Variability in interpretation of low-dose chest CT using computerized assessment in a nationwide lung cancer screening program: comparison of prospective reading at individual institutions and retrospective central reading. European Radiology, 2021, 31, 2845-2855.	4.5	9

#	Article	IF	CITATIONS
19	Implementation of the cloud-based computerized interpretation system in a nationwide lung cancer screening with low-dose CT: comparison with the conventional reading system. European Radiology, 2021, 31, 475-485.	4.5	14
20	Deep learning–based automated detection algorithm for active pulmonary tuberculosis on chest radiographs: diagnostic performance in systematic screening of asymptomatic individuals. European Radiology, 2021, 31, 1069-1080.	4.5	29
21	Cone-Beam CT-Guided Percutaneous Transthoracic Needle Lung Biopsy of Juxtaphrenic Lesions: Diagnostic Accuracy and Complications. Korean Journal of Radiology, 2021, 22, 1203.	3.4	7
22	CT quantification of the heterogeneity of fibrosis boundaries in idiopathic pulmonary fibrosis. European Radiology, 2021, 31, 5148-5159.	4.5	3
23	Tissue Adequacy and Safety of Percutaneous Transthoracic Needle Biopsy for Molecular Analysis in Non-Small Cell Lung Cancer: A Systematic Review and Meta-analysis. Korean Journal of Radiology, 2021, 22, 2082.	3.4	6
24	Volume and Mass Doubling Time of Lung Adenocarcinoma according to WHO Histologic Classification. Korean Journal of Radiology, 2021, 22, 464.	3.4	14
25	Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques. European Radiology, 2021, 31, 5139-5147.	4.5	29
26	Automated Lung Segmentation on Chest Computed Tomography Images with Extensive Lung Parenchymal Abnormalities Using a Deep Neural Network. Korean Journal of Radiology, 2021, 22, 476.	3.4	23
27	Use of Artificial Intelligence-Based Software as Medical Devices for Chest Radiography: A Position Paper from the Korean Society of Thoracic Radiology. Korean Journal of Radiology, 2021, 22, 1743.	3.4	29
28	Interstitial Lung Abnormalities: What Radiologists Should Know. Korean Journal of Radiology, 2021, 22, 454.	3.4	14
29	Usefulness of staging chest-CT in patients with operable breast cancer. PLoS ONE, 2021, 16, e0246563.	2.5	0
30	Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction. European Radiology, 2021, 31, 5533-5543.	4.5	37
31	Optimum diameter threshold for lung nodules at baseline lung cancer screening with low-dose chest CT: exploration of results from the Korean Lung Cancer Screening Project. European Radiology, 2021, 31, 7202-7212.	4.5	6
32	Pleural recurrence after transthoracic needle lung biopsy in stage I lung cancer: a systematic review and individual patient-level meta-analysis. Thorax, 2021, 76, 582-590.	5.6	17
33	Chest CT Diagnosis and Clinical Management of Drug-related Pneumonitis in Patients Receiving Molecular Targeting Agents and Immune Checkpoint Inhibitors: A Position Paper from the Fleischner Society. Radiology, 2021, 298, 550-566.	7.3	53
34	Diagnostic procedures and clinico-radiological findings of acute fibrinous and organizing pneumonia: a systematic review and pooled analysis. European Radiology, 2021, 31, 7283-7294.	4.5	4
35	Effectiveness of radiologist training in improving reader agreement for Lung-RADS 4X categorization. European Radiology, 2021, 31, 8147-8159.	4.5	2
36	Deep Learning–based Super-Resolution Algorithm: Potential in the Management of Subsolid Nodules. Radiology, 2021, 299, 220-221.	7.3	2

#	Article	IF	Citations
37	Automatic prediction of left cardiac chamber enlargement from chest radiographs using convolutional neural network. European Radiology, 2021, 31, 8130-8140.	4.5	3
38	Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps. European Radiology, 2021, 31, 9012-9021.	4. 5	11
39	Central Tumor Location at Chest CT Is an Adverse Prognostic Factor for Disease-Free Survival of Node-Negative Early-Stage Lung Adenocarcinomas. Radiology, 2021, 299, 438-447.	7.3	18
40	COVID-19 pneumonia on chest X-rays: Performance of a deep learning-based computer-aided detection system. PLoS ONE, 2021, 16, e0252440.	2.5	22
41	Deep Learning for Detection of Pulmonary Metastasis on Chest Radiographs. Radiology, 2021, 301, 455-463.	7.3	19
42	Deep Learning to Determine the Activity of Pulmonary Tuberculosis on Chest Radiographs. Radiology, 2021, 301, 435-442.	7.3	20
43	Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment. Clinical Nutrition, 2021, 40, 5038-5046.	5.0	47
44	The Global Reading Room: A Likely Infectious Abnormality on Lung Cancer Screening CT. American Journal of Roentgenology, 2021, , .	2.2	0
45	Association of Adipopenia at Preoperative PET/CT with Mortality in Stage I Non–Small Cell Lung Cancer. Radiology, 2021, 301, 645-653.	7.3	16
46	Basics and Clinical Application of CT for Pulmonary Functional Evaluation. Medical Radiology, 2021, , 21-45.	0.1	1
47	Extended application of a CT-based artificial intelligence prognostication model in patients with primary lung cancer undergoing stereotactic ablative radiotherapy. Radiotherapy and Oncology, 2021, 165, 166-173.	0.6	3
48	CT Examinations for COVID-19: A Systematic Review of Protocols, Radiation Dose, and Numbers Needed to Diagnose and Predict. Journal of the Korean Society of Radiology, 2021, 82, 1505.	0.2	2
49	Deep learning computer-aided detection system for pneumonia in febrile neutropenia patients: a diagnostic cohort study. BMC Pulmonary Medicine, 2021, 21, 406.	2.0	1
50	Validation of the Eighth Edition Clinical T Categorization System for Clinical Stage IA, Resected Lung Adenocarcinomas: Prognostic Implications of the Ground-Glass Opacity Component. Journal of Thoracic Oncology, 2020, 15, 580-588.	1.1	25
51	Test-retest reproducibility of a deep learning–based automatic detection algorithm for the chest radiograph. European Radiology, 2020, 30, 2346-2355.	4.5	10
52	Utility of FDG PET/CT for Preoperative Staging of Non–Small Cell Lung Cancers Manifesting as Subsolid Nodules With a Solid Portion of 3 cm or Smaller. American Journal of Roentgenology, 2020, 214, 514-523.	2.2	12
53	Performance of a Deep Learning Algorithm Compared with Radiologic Interpretation for Lung Cancer Detection on Chest Radiographs in a Health Screening Population. Radiology, 2020, 297, 687-696.	7.3	45
54	Automated identification of chest radiographs with referable abnormality with deep learning: need for recalibration. European Radiology, 2020, 30, 6902-6912.	4.5	9

#	Article	IF	CITATIONS
55	Lung Cancer CT Screening and Lung-RADS in a Tuberculosis-endemic Country: The Korean Lung Cancer Screening Project (K-LUCAS). Radiology, 2020, 296, 181-188.	7.3	27
56	Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas. Radiology, 2020, 296, 216-224.	7.3	82
57	Growth and Clinical Impact of 6-mm or Larger Subsolid Nodules after 5 Years of Stability at Chest CT. Radiology, 2020, 295, 448-455.	7.3	27
58	Coronary artery calcium severity grading on non-ECG-gated low-dose chest computed tomography: a multiple-observer study in a nationwide lung cancer screening registry. European Radiology, 2020, 30, 3684-3691.	4.5	16
59	The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology, 2020, 296, 172-180.	7.3	721
60	Deep learning algorithm for surveillance of pneumothorax after lung biopsy: a multicenter diagnostic cohort study. European Radiology, 2020, 30, 3660-3671.	4.5	32
61	CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists. European Radiology, 2020, 30, 3295-3305.	4.5	25
62	Clustered micronodules as predominant manifestation on CT: A sign of active but indolently evolving pulmonary tuberculosis. PLoS ONE, 2020, 15, e0231537.	2.5	7
63	Extension of Coronavirus Disease 2019 on Chest CT and Implications for Chest Radiographic Interpretation. Radiology: Cardiothoracic Imaging, 2020, 2, e200107.	2.5	59
64	Right-Angled Traction Bronchiectasis in Differentiating Idiopathic Pulmonary Fibrosis Without Honeycombing From Idiopathic Nonspecific Interstitial Pneumonia. Investigative Radiology, 2020, 55, 387-395.	6.2	2
65	Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19. Korean Journal of Radiology, 2020, 21, 1150.	3.4	41
66	Undetected Lung Cancer at Posteroanterior Chest Radiography: Potential Role of a Deep Learning–based Detection Algorithm. Radiology: Cardiothoracic Imaging, 2020, 2, e190222.	2.5	14
67	Role of Chest Radiographs and CT Scans and the Application of Artificial Intelligence in Coronavirus Disease 2019. Journal of the Korean Society of Radiology, 2020, 81, 1334.	0.2	2
68	Risk of pleural recurrence after percutaneous transthoracic needle biopsy in stage I non-small-cell lung cancer. European Radiology, 2019, 29, 270-278.	4.5	17
69	CT-defined Visceral Pleural Invasion in T1 Lung Adenocarcinoma: Lack of Relationship to Disease-Free Survival. Radiology, 2019, 292, 741-749.	7.3	29
70	Deep Learning for Chest Radiograph Diagnosis in the Emergency Department. Radiology, 2019, 293, 573-580.	7.3	107
71	Non-diagnostic Results of Percutaneous Transthoracic Needle Biopsy: A Meta-analysis. Scientific Reports, 2019, 9, 12428.	3.3	10
72	Consolidation-to-tumor ratio and tumor disappearance ratio are not independent prognostic factors for the patients with resected lung adenocarcinomas. Lung Cancer, 2019, 137, 123-128.	2.0	24

#	Article	IF	CITATIONS
73	Evaluation of maximum standardized uptake value at fluorine-18 fluorodeoxyglucose positron emission tomography as a complementary T factor in the eighth edition of lung cancer stage classification. Lung Cancer, 2019, 134, 151-157.	2.0	2
74	Sleeve Lobectomy for Non–Small Cell Lung Cancers: Predictive CT Features for Resectability and Outcome Analysis. American Journal of Roentgenology, 2019, 213, 807-816.	2.2	5
75	Interstitial Lung Abnormalities: Poor Prognosis for Patients with Lung Cancer. Radiology, 2019, 292, 499-500.	7.3	0
76	Age―and genderâ€specific disease distribution and the diagnostic accuracy of CT for resected anterior mediastinal lesions. Thoracic Cancer, 2019, 10, 1378-1387.	1.9	14
77	Learning Curve of C-Arm Cone-beam Computed Tomography Virtual Navigation-Guided Percutaneous Transthoracic Needle Biopsy. Korean Journal of Radiology, 2019, 20, 844.	3.4	4
78	Clinical T categorization in stage IA lung adenocarcinomas: prognostic implications of CT display window settings for solid portion measurement. European Radiology, 2019, 29, 6069-6079.	4.5	8
79	Quantitative Thoracic Magnetic Resonance Criteria for the Differentiation of Cysts from Solid Masses in the Anterior Mediastinum. Korean Journal of Radiology, 2019, 20, 854.	3.4	14
80	Development and Validation of a Deep Learning–Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA Network Open, 2019, 2, e191095.	5.9	284
81	Distinguishing between Thymic Epithelial Tumors and Benign Cysts via Computed Tomography. Korean Journal of Radiology, 2019, 20, 671.	3.4	16
82	Effect of Reconstruction Parameters on the Quantitative Analysis of Chest Computed Tomography. Journal of Thoracic Imaging, 2019, 34, 92-102.	1.5	21
83	Implication of total tumor size on the prognosis of patients with clinical stage IA lung adenocarcinomas appearing as part-solid nodules: Does only the solid portion size matter?. European Radiology, 2019, 29, 1586-1594.	4.5	4
84	Effect of CT Reconstruction Algorithm on the Diagnostic Performance of Radiomics Models: A Task-Based Approach for Pulmonary Subsolid Nodules. American Journal of Roentgenology, 2019, 212, 505-512.	2.2	19
85	Development and Validation of a Deep Learning–based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clinical Infectious Diseases, 2019, 69, 739-747.	5.8	150
86	Personalized 3D-Printed Model for Informed Consent for Stage I Lung Cancer: A Randomized Pilot Trial. Seminars in Thoracic and Cardiovascular Surgery, 2019, 31, 316-318.	0.6	29
87	Clinical T Category of Non–Small Cell Lung Cancers: Prognostic Performance of Unidimensional versus Bidimensional Measurements at CT. Radiology, 2019, 290, 807-813.	7.3	12
88	A simple prediction model using size measures for discrimination of invasive adenocarcinomas among incidental pulmonary subsolid nodules considered for resection. European Radiology, 2019, 29, 1674-1683.	4. 5	15
89	Development and Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology, 2019, 290, 218-228.	7.3	372
90	Lung Cancer Screening with Low-Dose CT: Current Status in Other Countries. Journal of the Korean Society of Radiology, 2019, 80, 849.	0.2	4

#	Article	IF	Citations
91	Development of Protocol for Korean Lung Cancer Screening Project (K-LUCAS) to Evaluate Effectiveness and Feasibility to Implement National Cancer Screening Program. Cancer Research and Treatment, 2019, 51, 1285-1294.	3.0	40
92	Improving the prediction of lung adenocarcinoma invasive component on CT: Value of a vessel removal algorithm during software segmentation of subsolid nodules. European Journal of Radiology, 2018, 100, 58-65.	2.6	11
93	Incidental Anterior Mediastinal Nodular Lesions onÂChest CT in Asymptomatic Subjects. Journal of Thoracic Oncology, 2018, 13, 359-366.	1.1	39
94	Evaluation of T categories for pure ground-glass nodules with semi-automatic volumetry: is mass a better predictor of invasive part size than other volumetric parameters?. European Radiology, 2018, 28, 4288-4295.	4.5	15
95	Gradient-echo-based 3D submillisecond echo time pulmonary MR imaging: a preliminary usability study on clinical and preclinical MR scanners. British Journal of Radiology, 2018, 91, 20170796.	2.2	1
96	Time-dependent analysis of incidence, risk factors and clinical significance of pneumothorax after percutaneous lung biopsy. European Radiology, 2018, 28, 1328-1337.	4.5	38
97	Pulmonary subsolid nodules: value of semi-automatic measurement in diagnostic accuracy, diagnostic reproducibility and nodule classification agreement. European Radiology, 2018, 28, 2124-2133.	4.5	24
98	Risk factors for haemoptysis after percutaneous transthoracic needle biopsies in 4,172 cases: Focusing on the effects of enlarged main pulmonary artery diameter. European Radiology, 2018, 28, 1410-1419.	4.5	19
99	Ground-glass nodule segmentation in chest CT images using asymmetric multi-phase deformable model and pulmonary vessel removal. Computers in Biology and Medicine, 2018, 92, 128-138.	7.0	27
100	Repeat biopsy of patients with acquired resistance to EGFR TKIs: implications of biopsy-related factors on T790M mutation detection. European Radiology, 2018, 28, 861-868.	4.5	20
101	Variable radiological lung nodule evaluation leads to divergent management recommendations. European Respiratory Journal, 2018, 52, 1801359.	6.7	32
102	Measurement of Multiple Solid Portions in Part-Solid Nodules for T Categorization: Evaluation of Prognostic Implication. Journal of Thoracic Oncology, 2018, 13, 1864-1872.	1.1	14
103	Cone-Beam CT Virtual Navigation-Guided Percutaneous Needle Biopsy of Suspicious Pleural Metastasis: A Pilot Study. Korean Journal of Radiology, 2018, 19, 872.	3.4	4
104	Virtual reality-assisted localization and three-dimensional printing-enhanced multidisciplinary decision to treat radiologically occult superficial endobronchial lung cancer. Thoracic Cancer, 2018, 9, 1525-1527.	1.9	8
105	Bronchovascular injury associated with clinically significant hemoptysis after CT-guided core biopsy of the lung: Radiologic and histopathologic analysis. PLoS ONE, 2018, 13, e0204064.	2.5	11
106	Diagnosis of Idiopathic Pulmonary Fibrosis in a Possible Usual Interstitial Pneumonia Pattern: a meta-analysis. Scientific Reports, 2018, 8, 15886.	3.3	6
107	Inspiratory Lung Expansion in Patients with Interstitial Lung Disease: CT Histogram Analyses. Scientific Reports, 2018, 8, 15265.	3.3	5
108	Juxtapleural (Perifissural) Nodules: Does Location Mean a Benign Lesion?. Radiology, 2018, 288, 876-877.	7.3	7

#	Article	IF	CITATIONS
109	Radiological Report of Pilot Study for the Korean Lung Cancer Screening (K-LUCAS) Project: Feasibility of Implementing Lung Imaging Reporting and Data System. Korean Journal of Radiology, 2018, 19, 803.	3.4	26
110	Visual discrimination of screen-detected persistent from transient subsolid nodules: An observer study. PLoS ONE, 2018, 13, e0191874.	2.5	8
111	Monitoring tumor response to the vascular disrupting agent CKD-516 in a rabbit VX2 intramuscular tumor model using PET/MRI: Simultaneous evaluation of vascular and metabolic parameters. PLoS ONE, 2018, 13, e0192706.	2.5	3
112	FDG Whole-Body PET/MRI in Oncology: a Systematic Review. Nuclear Medicine and Molecular Imaging, 2017, 51, 22-31.	1.0	28
113	Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules. European Radiology, 2017, 27, 3266-3274.	4.5	17
114	Non-specific benign pathological results on transthoracic core-needle biopsy: how to differentiate false-negatives?. European Radiology, 2017, 27, 3888-3895.	4.5	33
115	Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology, 2017, 284, 228-243.	7.3	1,587
116	Lung-RADS Category 4X: Does It Improve Prediction of Malignancy in Subsolid Nodules?. Radiology, 2017, 284, 264-271.	7.3	46
117	Development and validation of a prediction model for measurement variability of lung nodule volumetry in patients with pulmonary metastases. European Radiology, 2017, 27, 3257-3265.	4.5	4
118	Comparative characteristics of quantitative indexes for 18F-FDG uptake and metabolic volume in sequentially obtained PET/MRI and PET/CT. Nuclear Medicine Communications, 2017, 38, 333-339.	1.1	1
119	Predictive CT Features of Visceral Pleural Invasion by T1-Sized Peripheral Pulmonary Adenocarcinomas Manifesting as Subsolid Nodules. American Journal of Roentgenology, 2017, 209, 561-566.	2.2	38
120	Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society. Radiology, 2017, 285, 584-600.	7.3	250
121	CT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5Âmm without preoperative biopsy: experience at a single tertiary hospital. European Radiology, 2017, 27, 5119-5126.	4.5	19
122	Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8mm: which window setting is better?. European Radiology, 2017, 27, 1369-1376.	4.5	27
123	PET imaging approaches for inflammatory lung diseases: Current concepts and future directions. European Journal of Radiology, 2017, 86, 371-376.	2.6	23
124	Submillisievert Computed Tomography of the Chest in Contact Investigation for Drug-Resistant Tuberculosis. Journal of Korean Medical Science, 2017, 32, 1779.	2.5	10
125	Are Lung Imaging Reporting and Data System Categories Clear to Radiologists? A Survey of the Korean Society of Thoracic Radiology Members on Ten Difficult-to-Classify Scenarios. Korean Journal of Radiology, 2017, 18, 402.	3.4	7
126	Relationship Between Ktrans and K1 with Simultaneous Versus Separate MR/PET in Rabbits with VX2 Tumors. Anticancer Research, 2017, 37, 1139-1148.	1.1	2

#	Article	IF	CITATIONS
127	Measurement Variability of Persistent Pulmonary Subsolid Nodules on Same-Day Repeat CT: What Is the Threshold to Determine True Nodule Growth during Follow-Up?. PLoS ONE, 2016, 11, e0148853.	2.5	19
128	Microscopic Invasions, Prognoses, and Recurrence Patterns of Stage I Adenocarcinomas Manifesting as Part-Solid Ground-Glass Nodules. Medicine (United States), 2016, 95, e3419.	1.0	5
129	Tumor Heterogeneity in Lung Cancer: Assessment with Dynamic Contrast-enhanced MR Imaging. Radiology, 2016, 280, 940-948.	7. 3	52
130	Software performance in segmenting ground-glass and solid components of subsolid nodules in pulmonary adenocarcinomas. European Radiology, 2016, 26, 4465-4474.	4.5	42
131	Persistent pulmonary subsolid nodules with solid portions of 5Âmm or smaller: Their natural course and predictors of interval growth. European Radiology, 2016, 26, 1529-1537.	4.5	60
132	The IASLC Lung Cancer Staging Project: Proposals for Coding T Categories for Subsolid Nodules and Assessment of Tumor Size in Part-Solid Tumors in the Forthcoming Eighth Edition of the TNM Classification of Lung Cancer. Journal of Thoracic Oncology, 2016, 11, 1204-1223.	1.1	530
133	The effect of late-phase contrast enhancement on semi-automatic software measurements of CT attenuation and volume of part-solid nodules in lung adenocarcinomas. European Journal of Radiology, 2016, 85, 1174-1180.	2.6	15
134	The IASLC Lung Cancer Staging Project: Background Data and Proposals for the Application of TNM Staging Rules to Lung Cancer Presenting as Multiple Nodules with Ground Glass or Lepidic Features or a Pneumonic Type of Involvement in the Forthcoming Eighth Edition of the TNM Classification. Journal of Thoracic Oncology, 2016, 11, 666-680.	1.1	170
135	Observer variability in RECIST-based tumour burden measurements: a meta-analysis. European Journal of Cancer, 2016, 53, 5-15.	2.8	59
136	Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. European Radiology, 2016, 26, 3850-3857.	4.5	58
137	Perfusion parameters as potential imaging biomarkers for the early prediction of radiotherapy response in a rat tumor model. Diagnostic and Interventional Radiology, 2016, 22, 231-240.	1.5	8
138	Computer-Aided Diagnosis and Quantification in Chest CT. Medical Radiology, 2016, , 431-449.	0.1	0
139	Persistent Pure Ground-Glass Nodules Larger Than 5 mm. Investigative Radiology, 2015, 50, 798-804.	6.2	66
140	Quantitative Computed Tomography Imaging Biomarkers in the Diagnosis and Management of Lung Cancer. Investigative Radiology, 2015, 50, 571-583.	6.2	41
141	Digital Tomosynthesis for Evaluating Metastatic Lung Nodules: Nodule Visibility, Learning Curves, and Reading Times. Korean Journal of Radiology, 2015, 16, 430.	3.4	11
142	Pulmonary Nodule Detection in Patients with a Primary Malignancy Using Hybrid PET/MRI: Is There Value in Adding Contrast-Enhanced MR Imaging?. PLoS ONE, 2015, 10, e0129660.	2.5	13
143	Collateral Ventilation Quantification Using Xenon-Enhanced Dynamic Dual-Energy CT: Differences between Canine and Swine Models of Bronchial Occlusion. Korean Journal of Radiology, 2015, 16, 648.	3.4	3
144	Pulmonary adenocarcinomas appearing as part-solid ground-glass nodules: Is measuring solid component size a better prognostic indicator?. European Radiology, 2015, 25, 558-567.	4.5	75

#	Article	IF	Citations
145	PET/MR Imaging for Chest Diseases. Magnetic Resonance Imaging Clinics of North America, 2015, 23, 245-259.	1.1	8
146	CT findings of minimally invasive adenocarcinoma (MIA) of the lung and comparison of solid portion measurement methods at CT in 52 patients. European Radiology, 2015, 25, 2318-2325.	4.5	37
147	Large cell neuroendocrine carcinoma of the lung: CT and FDG PET findings. European Journal of Radiology, 2015, 84, 2332-2338.	2.6	28
148	Transient subsolid nodules in patients with extrapulmonary malignancies: their frequency and differential features. Acta Radiologica, 2015, 56, 428-437.	1.1	14
149	Value of Computerized 3D Shape Analysis in Differentiating Encapsulated from Invasive Thymomas. PLoS ONE, 2015, 10, e0126175.	2.5	11
150	Pulmonary subsolid nodules: what radiologists need to know about the imaging features and management strategy. Diagnostic and Interventional Radiology, 2014, 20, 47-57.	1.5	47
151	Computer-Aided Classification of Visual Ventilation Patterns in Patients with Chronic Obstructive Pulmonary Disease at Two-Phase Xenon-Enhanced CT. Korean Journal of Radiology, 2014, 15, 386.	3.4	8
152	C-Arm Cone-Beam CT-guided Percutaneous Transthoracic Needle Biopsy of Lung Nodules: Clinical Experience in 1108 Patients. Radiology, 2014, 271, 291-300.	7.3	163
153	Positron Emission Tomography/Magnetic Resonance Imaging Evaluation of Lung Cancer. Journal of Thoracic Imaging, 2014, 29, 4-16.	1.5	33
154	Correlation between the Size of the Solid Component on Thin-Section CT and the Invasive Component on Pathology in Small Lung Adenocarcinomas Manifesting as Ground-Glass Nodules. Journal of Thoracic Oncology, 2014, 9, 74-82.	1.1	190
155	Evaluation of Azygous Vein Aneurysm Using Integrated PET/MRI. Nuclear Medicine and Molecular Imaging, 2014, 48, 161-162.	1.0	3
156	Quantitative analysis of emphysema and airway measurements according to iterative reconstruction algorithms: comparison of filtered back projection, adaptive statistical iterative reconstruction and model-based iterative reconstruction. European Radiology, 2014, 24, 799-806.	4.5	50
157	Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: A phantom study. European Journal of Radiology, 2014, 83, 848-857.	2.6	46
158	Volume and Mass Doubling Times of Persistent Pulmonary Subsolid Nodules Detected in Patients without Known Malignancy. Radiology, 2014, 273, 276-284.	7.3	105
159	Quantification of emphysema with preoperative computed tomography has stronger association with pulmonary complications than pulmonary function test results after pulmonary lobectomy. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 915-920.	0.8	9
160	Pulmonary nodule registration in serial CT scans using global rib matching and nodule template matching. Computers in Biology and Medicine, 2014, 45, 87-97.	7.0	19
161	Usefulness of Texture Analysis in Differentiating Transient from Persistent Part-solid Nodules(PSNs): A Retrospective Study. PLoS ONE, 2014, 9, e85167.	2.5	40
162	Quantitative thoracic CT techniques in adults: can they be applied in the pediatric population?. Pediatric Radiology, 2013, 43, 308-314.	2.0	12

#	Article	IF	CITATIONS
163	Natural History of Ground-Glass Nodules Detected on the Chest Computed Tomography Scan After Major Lung Resection. Annals of Thoracic Surgery, 2013, 96, 1952-1957.	1.3	18
164	Recommendations for the Management of Subsolid Pulmonary Nodules Detected at CT: A Statement from the Fleischner Society. Radiology, 2013, 266, 304-317.	7.3	891
165	Percutaneous transthoracic needle biopsy of small (â‰ # Âcm) lung nodules under C-arm cone-beam CT virtual navigation guidance. European Radiology, 2013, 23, 712-719.	4.5	94
166	Pure and Part-Solid Pulmonary Ground-Glass Nodules: Measurement Variability of Volume and Mass in Nodules with a Solid Portion Less than or Equal to 5 mm. Radiology, 2013, 269, 585-593.	7.3	59
167	Does Antiplatelet Therapy Increase the Risk of Hemoptysis During Percutaneous Transthoracic Needle Biopsy of a Pulmonary Lesion?. American Journal of Roentgenology, 2013, 200, 1014-1019.	2.2	26
168	Invasive Pulmonary Adenocarcinomas versus Preinvasive Lesions Appearing as Ground-Glass Nodules: Differentiation by Using CT Features. Radiology, 2013, 268, 265-273.	7.3	260
169	Follicular dendritic cell sarcoma of the mediastinum: CT and ¹⁸ Fâ€fluoroâ€2â€deoxyglucose PET findings. Thoracic Cancer, 2013, 4, 203-206.	1.9	7
170	Imaging Characteristics of Stage I Non-Small Cell Lung Cancer on CT and FDG-PET: Relationship with Epidermal Growth Factor Receptor Protein Expression Status and Survival. Korean Journal of Radiology, 2013, 14, 375.	3.4	28
171	A Comparison of Two Commercial Volumetry Software Programs in the Analysis of Pulmonary Ground-Glass Nodules: Segmentation Capability and Measurement Accuracy. Korean Journal of Radiology, 2013, 14, 683.	3.4	27
172	Computer-Aided Nodule Detection and Volumetry to Reduce Variability Between Radiologists in the Interpretation of Lung Nodules at Low-Dose Screening Computed Tomography. Investigative Radiology, 2012, 47, 457-461.	6.2	64
173	IASLC/ATS/ERS International Multidisciplinary Classification of Lung Adenocarcinoma. Journal of Thoracic Imaging, 2012, 27, 340-353.	1.5	69
174	C-Arm Cone-Beam CT–Guided Percutaneous Transthoracic Needle Biopsy of Small (â‰⊉0 mm) Lung Nodules: Diagnostic Accuracy and Complications in 161 Patients. American Journal of Roentgenology, 2012, 199, W322-W330.	2.2	94
175	Inter-scan repeatability of CT-based lung densitometry in the surveillance of emphysema in a lung cancer screening setting. European Journal of Radiology, 2012, 81, e554-e560.	2.6	15
176	Computer-Aided Detection of Malignant Lung Nodules on Chest Radiographs: Effect on Observers' Performance. Korean Journal of Radiology, 2012, 13, 564.	3.4	27
177	Accuracy and predictive features of FDG-PET/CT and CT for diagnosis of lymph node metastasis of T1 non-small-cell lung cancer manifesting as a subsolid nodule. European Radiology, 2012, 22, 1556-1563.	4.5	36
178	Ground-Glass Nodules on Chest CT as Imaging Biomarkers in the Management of Lung Adenocarcinoma. American Journal of Roentgenology, 2011, 196, 533-543.	2,2	103
179	A Computer-Aided Diagnosis for Evaluating Lung Nodules on Chest CT: the Current Status and Perspective. Korean Journal of Radiology, 2011, 12, 145.	3.4	71
180	Initial experience of percutaneous transthoracic needle biopsy of lung nodules using C-arm cone-beam CT systems. European Radiology, 2010, 20, 2108-2115.	4.5	75

#	Article	IF	Citations
181	Ground-glass nodules found in two patients with malignant melanomas: different growth rate and different histology. Clinical Imaging, 2010, 34, 396-399.	1.5	19
182	The Clinical Feasibility of Using Non-Breath-Hold Real-Time MR-Echo Imaging for the Evaluation of Mediastinal and Chest Wall Tumor Invasion. Korean Journal of Radiology, 2010, 11, 37.	3.4	11
183	Persistent Pure Ground-Glass Nodules in the Lung: Interscan Variability of Semiautomated Volume and Attenuation Measurements. American Journal of Roentgenology, 2010, 195, W408-W414.	2.2	43
184	CT Characteristics of Lung Nodules Present at Diagnosis of Extrapulmonary Malignancy in Children. American Journal of Roentgenology, 2010, 195, W308-W308.	2.2	1
185	Transient Part-Solid Nodules Detected at Screening Thin-Section CT for Lung Cancer: Comparison with Persistent Part-Solid Nodules (sup />. Radiology, 2010, 255, 242-251.	7.3	121
186	FN13762 Murine Breast Cancer: Region-by-Region Correlation of First-Pass Perfusion CT Indexes with Histologic Vascular Parameters. Radiology, 2009, 251, 721-730.	7.3	20
187	Predictive CT findings of malignancy in ground-glass nodules on thin-section chest CT: the effects on radiologist performance. European Radiology, 2009, 19, 552-560.	4.5	121
188	Clinical, pathological and thin-section CT features of persistent multiple ground-glass opacity nodules: Comparison with solitary ground-glass opacity nodule. Lung Cancer, 2009, 64, 171-178.	2.0	103
189	EGFR gene copy number in adenocarcinoma of the lung by FISH analysis: Investigation of significantly related factors on CT, FDG-PET, and histopathology. Lung Cancer, 2009, 64, 179-186.	2.0	31
190	Differentiation between malignancy and inflammation in pulmonary ground-glass nodules: The feasibility of integrated 18F-FDG PET/CT. Lung Cancer, 2009, 65, 180-186.	2.0	85
191	Efficacy of Computer-Aided Detection System and Thin-Slab Maximum Intensity Projection Technique in the Detection of Pulmonary Nodules in Patients With Resected Metastases. Investigative Radiology, 2009, 44, 105-113.	6.2	40
192	A Color-coded Virtual Bronchoscopy with Enhanced Efficiency. , 2008, , .		0
193	Radiation Dose Modulation Techniques in the Multidetector CT Era: From Basics to Practice. Radiographics, 2008, 28, 1451-1459.	3.3	279
194	Pulmonary Nodular Ground-Glass Opacities in Patients With Extrapulmonary Cancers. Chest, 2008, 133, 1402-1409.	0.8	69
195	Is the Computer-Aided Detection Scheme for Lung Nodule Also Useful in Detecting Lung Cancer?. Journal of Computer Assisted Tomography, 2008, 32, 570-575.	0.9	21
196	Nodular Ground-Glass Opacity at Thin-Section CT: Histologic Correlation and Evaluation of Change at Follow-up. Radiographics, 2007, 27, 391-408.	3.3	258
197	Nodular Ground-Glass Opacities on Thin-section CT: Size Change during Follow-up and Pathological Results. Korean Journal of Radiology, 2007, 8, 22.	3.4	103
198	Focal interstitial fibrosis manifesting as nodular ground-glass opacity: thin-section CT findings. European Radiology, 2007, 17, 2325-2331.	4.5	43

#	Article	IF	Citations
199	CT Findings of Atypical Adenomatous Hyperplasia in the Lung. Korean Journal of Radiology, 2006, 7, 80.	3.4	59
200	Volumetric Measurements of Lung Nodules with Multi-Detector Row CT: Effect of Changes in Lung Volume. Korean Journal of Radiology, 2006, 7, 243.	3.4	37
201	Value of high-resolution ultrasound in detecting a pneumothorax. European Radiology, 2005, 15, 930-935.	4.5	73
202	Computer-Aided Detection of Lung Nodules on Chest CT: Issues to be Solved before Clinical Use. Korean Journal of Radiology, 2005, 6, 62.	3.4	18
203	Volumetric Measurement of Synthetic Lung Nodules with Multi–Detector Row CT: Effect of Various Image Reconstruction Parameters and Segmentation Thresholds on Measurement Accuracy. Radiology, 2005, 235, 850-856.	7. 3	144
204	Computer-aided Diagnosis of Localized Ground-Glass Opacity in the Lung at CT: Initial Experience. Radiology, 2005, 237, 657-661.	7. 3	81
205	Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists. Korean Journal of Radiology, 2004, 5, 11.	3.4	605
206	The Potential Contribution of a Computer-Aided Detection System for Lung Nodule Detection in Multidetector Row Computed Tomography. Investigative Radiology, 2004, 39, 649-655.	6.2	61
207	Computer-Aided Diagnosis in Chest CT. Tuberculosis and Respiratory Diseases, 2004, 57, 515.	1.8	0
208	Posterior Subpleural Nodules in Patients With Underlying Malignancies: Value of Prone Computed Tomography. Journal of Computer Assisted Tomography, 2003, 27, 274-278.	0.9	12
209	Automated Lung Nodule Detection at Low-Dose CT: Preliminary Experience. Korean Journal of Radiology, 2003, 4, 211.	3.4	49
210	Thoracic Sequelae and Complications of Tuberculosis. Radiographics, 2001, 21, 839-858.	3.3	255
211	Cystic Lung Disease: a Comparison of Cystic Size, as Seen on Expiratory and Inspiratory HRCT Scans. Korean Journal of Radiology, 2000, 1, 84.	3.4	13
212	Bronchial Anthracofibrosis (Inflammatory Bronchial Stenosis with Anthracotic Pigmentation). American Journal of Roentgenology, 2000, 174, 523-527.	2.2	78