Vlad Dinca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8038643/publications.pdf

Version: 2024-02-01

64 papers 2,595 citations

201674 27 h-index 223800 46 g-index

71 all docs

71 docs citations

times ranked

71

2974 citing authors

#	Article	IF	CITATIONS
1	Factors affecting species delimitations with the <scp>GMYC</scp> model: insights from a butterfly survey. Methods in Ecology and Evolution, 2013, 4, 1101-1110.	5.2	271
2	Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera. Systematic Biology, 2016, 65, 1024-1040.	5 . 6	160
3	Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 347-355.	2.6	135
4	Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nature Communications, 2011, 2, 324.	12.8	131
5	DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Scientific Reports, 2015, 5, 12395.	3.3	110
6	Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies. Genome Biology and Evolution, 2017, 9, 2491-2505.	2.5	94
7	An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). ZooKeys, 2018, 811, 9-45.	1.1	90
8	A mirage of cryptic species: Genomics uncover striking mitonuclear discordance in the butterfly <i>Thymelicus sylvestris </i> . Molecular Ecology, 2019, 28, 3857-3868.	3.9	75
9	Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evolutionary Biology, 2011, 11, 109.	3.2	74
10	Global invasion history of the agricultural pest butterfly <i>Pieris rapae</i> revealed with genomics and citizen science. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20015-20024.	7.1	70
11	Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodiversity Data Journal, 2015, 3, e6313.	0.8	69
12	Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Molecular Ecology Resources, 2019, 19, 1623-1636.	4.8	66
13	Why Do Cryptic Species Tend Not to Co-Occur? A Case Study on Two Cryptic Pairs of Butterflies. PLoS ONE, 2015, 10, e0117802.	2.5	63
14	A combined geneticâ€morphometric analysis unravels the complex biogeographical history of <i>Polyommatus icarus</i> and <i>Polyommatus celina</i> Common Blue butterflies. Molecular Ecology, 2011, 20, 3921-3935.	3.9	62
15	Cryptic matters: overlooked species generate most butterfly betaâ€diversity. Ecography, 2015, 38, 405-409.	4.5	62
16	Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9610-E9619.	7.1	62
17	Reproductive isolation and patterns of genetic differentiation in a cryptic butterfly species complex. Journal of Evolutionary Biology, 2013, 26, 2095-2106.	1.7	60
18	High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Communications Biology, 2021, 4, 315.	4.4	57

#	Article	IF	CITATIONS
19	Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evolutionary Biology, 2015, 15, 89.	3.2	51
20	Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution ofÂthe northeast-Asian wood white butterfly, <i>Leptidea amurensis </i> Linnean Society, 2016, 118, 457-471.	1.6	49
21	Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. Journal of Biogeography, 2014, 41, 1639-1650.	3.0	45
22	Integrative analyses unveil speciation linked to host plant shift in <i><scp>S</scp>pialia</i> butterflies. Molecular Ecology, 2016, 25, 4267-4284.	3.9	44
23	A unified framework for diversity gradients: the adaptive trait continuum. Global Ecology and Biogeography, 2013, 22, 6-18.	5.8	41
24	Integrating national Red Lists for prioritising conservation actions for European butterflies. Journal of Insect Conservation, 2019, 23, 301-330.	1.4	38
25	The conundrum of species delimitation: a genomic perspective on a mitogenetically super-variable butterfly. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191311.	2.6	37
26	The Pleistocene species pump past its prime: Evidence from European butterfly sister species. Molecular Ecology, 2021, 30, 3575-3589.	3.9	35
27	Rise and fall of island butterfly diversity: Understanding genetic differentiation and extinction in a highly diverse archipelago. Diversity and Distributions, 2017, 23, 1169-1181.	4.1	32
28	Lack of gene flow: Narrow and dispersed differentiation islands in a triplet of <i>Leptidea</i> butterfly species. Molecular Ecology, 2019, 28, 3756-3770.	3.9	31
29	Historical and contemporary factors generate unique butterfly communities on islands. Scientific Reports, 2016, 6, 28828.	3.3	29
30	How long is 3Åkm for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. Journal of Animal Ecology, 2020, 89, 2013-2026.	2.8	29
31	Two ways to be endemic. Alps and Apennines are different functional refugia during climatic cycles. Molecular Ecology, 2021, 30, 1297-1310.	3.9	27
32	Use of genetic, climatic, and microbiological data to inform reintroduction of a regionally extinct butterfly. Conservation Biology, 2018, 32, 828-837.	4.7	26
33	Two consecutive <i>Wolbachia </i> â€mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae). Zoologica Scripta, 2019, 48, 507-519.	1.7	25
34	Incomplete Sterility of Chromosomal Hybrids: Implications for Karyotype Evolution and Homoploid Hybrid Speciation. Frontiers in Genetics, 2020, 11, 583827.	2.3	24
35	Dispersal, fragmentation, and isolation shape the phylogeography of the European lineages of xi>Polyommatus x/i> (xi>Agrodiaetus x/i>) xi>ripartii x/i> (Lepidoptera: Lycaenidae). Biological Journal of the Linnean Society, 2013, 109, 817-829.	1.6	23
36	Identifying zones of phenetic compression in West Mediterranean butterflies (Satyrinae): refugia, invasion and hybridization. Diversity and Distributions, 2012, 18, 1066-1076.	4.1	21

#	Article	IF	CITATIONS
37	Climatic niche evolution is faster in sympatric than allopatric lineages of the butterfly genus <i>Pyrgus</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170208.	2.6	21
38	Phylogenetic island disequilibrium: evidence for ongoing long-term population dynamics in two Mediterranean butterflies. Journal of Biogeography, 2011, 38, 854-867.	3.0	18
39	Historical and current patterns of gene flow in the butterfly <i>Pararge aegeria</i> . Journal of Biogeography, 2018, 45, 1628-1639.	3.0	18
40	Dissecting the Effects of Selection and Mutation on Genetic Diversity in Three Wood White (Leptidea) Butterfly Species. Genome Biology and Evolution, 2019, 11, 2875-2886.	2.5	18
41	The isolated <i>Erebia pandrose</i> Apennine population is genetically unique and endangered by climate change. Insect Conservation and Diversity, 2022, 15, 136-148.	3.0	18
42	Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Molecular Phylogenetics and Evolution, 2013, 66, 369-379.	2.7	16
43	Gene expression profiling across ontogenetic stages in the wood white (<i>Leptidea sinapis</i>) reveals pathways linked to butterfly diapause regulation. Molecular Ecology, 2018, 27, 935-948.	3.9	16
44	A DNA barcode library for the butterflies of North America. PeerJ, 2021, 9, e11157.	2.0	14
45	Genomics of extreme ecological specialists: multiple convergent evolution but no genetic divergence between ecotypes of Maculinea alcon butterflies. Scientific Reports, 2017, 7, 13752.	3.3	13
46	<i>Erebia epiphron</i> and <i>Erebia orientalis</i> sibling butterfly species with contrasting histories. Biological Journal of the Linnean Society, 2019, 126, 338-348.	1.6	12
47	Integrative analyses on Western Palearctic (i>Lasiommata (i>reveal a mosaic of nascent butterfly species. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 809-822.	1.4	12
48	Assigning occurrence data to cryptic taxa improves climatic niche assessments: Biodecrypt, a new tool tested on European butterflies. Global Ecology and Biogeography, 2020, 29, 1852-1865.	5.8	11
49	Rapid colour shift by reproductive character displacement in Cupido butterflies. Molecular Ecology, 2020, 29, 4942-4955.	3.9	10
50	Comparing population patterns for genetic and morphological markers with uneven sample sizes. An example for the butterfly <i>Maniola jurtina</i> . Methods in Ecology and Evolution, 2014, 5, 834-843.	5.2	9
51	Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zoology, 2018, 3, .	1.0	9
52	Overlooked cryptic diversity in <i>Muschampia</i> (Lepidoptera: Hesperiidae) adds two species to the European butterfly fauna. Zoological Journal of the Linnean Society, 2021, 193, 847-859.	2.3	9
53	Biogeography, ecology and conservation of <i>Erebia oeme</i> (Hübner) in the Carpathians (Lepidoptera: Nymphalidae: Satyrinae). Annales De La Societe Entomologique De France, 2010, 46, 486-498.	0.9	8
54	The genome sequence of the lesser marbled fritillary, <i>Brenthis ino</i> , and evidence for a segregating neo-Z chromosome. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	8

#	Article	IF	Citations
55	The sibling species Leptidea juvernica and L. sinapis (Lepidoptera, Pieridae) in the Balkan Peninsula: ecology, genetic structure, and morphological variation. Zoology, 2016, 119, 11-20.	1.2	6
56	Genomics Reveal Admixture and Unexpected Patterns of Diversity in a Parapatric Pair of Butterflies. Genes, 2021, 12, 2009.	2.4	5
57	Improving knowledge of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus) in Eastern Europe: Overview of the Romanian fauna. European Journal of Entomology, 0, 114, 179-194.	1.2	4
58	An updated checklist of the European Butterflies (Lepidoptera, Papilionoidea). ZooKeys, 0, 811, 9-45.	1.1	3
59	Genetics and extreme confinement of three overlooked butterfly species in Romania call for immediate conservation actions. Journal of Insect Conservation, 2021, 25, 137-146.	1.4	2
60	Genetic assessment and climate modelling of the Iberian specialist butterfly <i>Euchloe bazae</i> (Lepidoptera: Pieridae). Insect Conservation and Diversity, 2022, 15, 594-605.	3.0	2
61	Delimiting continuity: Comparison of target enrichment and double digest restrictionâ€site associated DNA sequencing for delineating admixing parapatric <i>Melitaea</i> butterflies. Systematic Entomology, 2022, 47, 637-654.	3.9	2
62	First record of Scopula orientalis (Alph \tilde{A} ©raky, 1876) (Lepidoptera, Geometridae) in Romania, at the northern limit of the Balkans. Nota Lepidopterologica, 2018, 41, 189-197.	0.6	1
63	Thysanoplusia orichalcea (Fabricius, 1775) (Lepidoptera, Noctuidae, Plusiinae) found again in Romania after more than 150 years. Entomologica Romanica, 2020, 24, 29-31.	0.2	1
64	Corrigendum to: Thysanoplusia orichalcea (Fabricius, 1775) (Lepidoptera, Noctuidae, Plusiinae) found again in Romania after more than 150 years. Entomologica Romanica, 2020, 24, 41-42.	0.2	O