
Stephen A Renshaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8038139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roscovitine Worsens <i>Mycobacterium abscessus</i> Infection by Reducing DUOX2-mediated Neutrophil Response. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 439-451.	2.9	2
2	A zebrafish reporter line reveals immune and neuronal expression of endogenous retrovirus. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	1
3	Blood vessel occlusion by Cryptococcus neoformans is a mechanism for haemorrhagic dissemination of infection. PLoS Pathogens, 2022, 18, e1010389.	4.7	13
4	Phagosomal Acidification Is Required to Kill Streptococcus pneumoniae in a Zebrafish Model. Cellular Microbiology, 2022, 2022, 1-13.	2.1	0
5	A subset of gut leukocytes has telomerase-dependent "hyper-long―telomeres and require telomerase for function in zebrafish. Immunity and Ageing, 2022, 19, .	4.2	3
6	The autophagic response to <i>Staphylococcus aureus</i> provides an intracellular niche in neutrophils. Autophagy, 2021, 17, 888-902.	9.1	49
7	Neutrophils use selective autophagy receptor Sqstm1/p62 to target <i>Staphylococcus aureus</i> for degradation <i>in vivo</i> in zebrafish. Autophagy, 2021, 17, 1448-1457.	9.1	21
8	Quantification of pulmonary perfusion in idiopathic pulmonary fibrosis with first pass dynamic contrast-enhanced perfusion MRI. Thorax, 2021, 76, 144-151.	5.6	15
9	Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction. PLoS Pathogens, 2021, 17, e1009468.	4.7	36
10	Human-specific staphylococcal virulence factors enhance pathogenicity in a humanised zebrafish C5a receptor model. Journal of Cell Science, 2021, 134, .	2.0	2
11	Pioneer neutrophils release chromatin within in vivo swarms. ELife, 2021, 10, .	6.0	36
12	Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathogens, 2021, 17, e1009880.	4.7	8
13	Demonstration of the role of cell wall homeostasis in <i>Staphylococcus aureus</i> growth and the action of bactericidal antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
14	Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish. PLoS ONE, 2020, 15, e0240231.	2.5	7
15	Deletion of cftr Leads to an Excessive Neutrophilic Response and Defective Tissue Repair in a Zebrafish Model of Sterile Inflammation. Frontiers in Immunology, 2020, 11, 1733.	4.8	21
16	Polymersomes Eradicating Intracellular Bacteria. ACS Nano, 2020, 14, 8287-8298.	14.6	47
17	Developing Novel Host-Based Therapies Targeting Microbicidal Responses in Macrophages and Neutrophils to Combat Bacterial Antimicrobial Resistance. Frontiers in Immunology, 2020, 11, 786.	4.8	10
18	The failure of microglia to digest developmental apoptotic cells contributes to the pathology of RNASET2â€deficient leukoencephalopathy. Glia, 2020, 68, 1531-1545.	4.9	35

#	Article	IF	CITATIONS
19	The Role of Macrophages in Staphylococcus aureus Infection. Frontiers in Immunology, 2020, 11, 620339.	4.8	129
20	Semaphorin 3F signaling actively retains neutrophils at sites of inflammation. Journal of Clinical Investigation, 2020, 130, 3221-3237.	8.2	12
21	The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at Inflammatory Sites in Zebrafish. Frontiers in Immunology, 2019, 10, 1784.	4.8	97
22	Polymeric nanobiotics as a novel treatment for mycobacterial infections. Journal of Controlled Release, 2019, 314, 116-124.	9.9	23
23	A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase. PLoS ONE, 2019, 14, e0215592.	2.5	42
24	15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathogens, 2019, 15, e1007597.	4.7	30
25	CFTR Protects against Mycobacterium abscessus Infection by Fine-Tuning Host Oxidative Defenses. Cell Reports, 2019, 26, 1828-1840.e4.	6.4	58
26	Hif-1α–Induced Expression of Il-1β Protects against Mycobacterial Infection in Zebrafish. Journal of Immunology, 2019, 202, 494-502.	0.8	64
27	Hyperpolarised xenon magnetic resonance spectroscopy for the longitudinal assessment of changes in gas diffusion in IPF. Thorax, 2019, 74, 500-502.	5.6	53
28	Staphylococcus aureus: setting its sights on the human innate immune system. Microbiology (United) Tj ETQqO	0 0 rgBT /0 1.8	Overlock 10 T
29	Inhibition of ErbB kinase signalling promotes resolution of neutrophilic inflammation. ELife, 2019, 8, .	6.0	20
30	Use of Larval Zebrafish Model to Study Within-Host Infection Dynamics. Methods in Molecular Biology, 2018, 1736, 147-156.	0.9	0
31	The triune of intestinal microbiome, genetics and inflammatory status and its impact on the healing of lower gastrointestinal anastomoses. FEBS Journal, 2018, 285, 1212-1225.	4.7	6
32	Estimation of Hidden Chemoattractant Field from Observed Cell Migration Patterns. IFAC-PapersOnLine, 2018, 51, 766-771.	0.9	1
33	PGE ₂ production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Science Advances, 2018, 4, eaar8320.	10.3	165
34	Human skin commensals augment Staphylococcus aureus pathogenesis. Nature Microbiology, 2018, 3, 881-890.	13.3	80
35	A method for transplantation of human HSCs into zebrafish, to replace humanised murine transplantation models. F1000Research, 2018, 7, 594.	1.6	14
36	A method for transplantation of human HSCs into zebrafish, to replace humanised murine transplantation models. F1000Research, 2018, 7, 594.	1.6	25

#	Article	IF	CITATIONS
37	Zebrafish screens for new colitis treatments – a bottomâ€up approach. FEBS Journal, 2017, 284, 399-401.	4.7	4
38	Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery. Journal of Immunology, 2017, 198, 3596-3604.	0.8	27
39	Identification of Staphylococcus aureus Factors Required for Pathogenicity and Growth in Human Blood. Infection and Immunity, 2017, 85, .	2.2	53
40	Expression and regulation of drug transporters in vertebrate neutrophils. Scientific Reports, 2017, 7, 4967.	3.3	22
41	NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival. Blood, 2017, 130, 1014-1025.	1.4	46
42	Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis. PLoS Pathogens, 2017, 13, e1006526.	4.7	18
43	Reverse Migration of Neutrophils: Where, When, How, and Why?. Trends in Immunology, 2016, 37, 273-286.	6.8	146
44	Identification of benzopyrone as a common structural feature in compounds with anti-inflammatory activity in a zebrafish phenotypic screen. DMM Disease Models and Mechanisms, 2016, 9, 621-32.	2.4	28
45	Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection. Scientific Reports, 2016, 6, 21489.	3.3	139
46	Purification of Nanoparticles by Size and Shape. Scientific Reports, 2016, 6, 27494.	3.3	169
47	Functional drug screening reveals anticonvulsants as enhancers of mTORâ€independent autophagic killing of <i>Mycobacterium tuberculosis</i> through inositol depletion. EMBO Molecular Medicine, 2015, 7, 127-139.	6.9	137
48	Defining the phenotype of neutrophils following reverse migration in zebrafish. Journal of Leukocyte Biology, 2015, 98, 975-981.	3.3	85
49	Glucocerebrosidase 1 deficient <i>Danio rerio</i> mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Human Molecular Genetics, 2015, 24, 6640-6652.	2.9	108
50	Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. DMM Disease Models and Mechanisms, 2015, 8, 1349-1360.	2.4	57
51	Inhibitors of neutrophil recruitment identified using transgenic zebrafish to screen a natural product library. DMM Disease Models and Mechanisms, 2014, 7, 163-9.	2.4	40
52	Tnfa Signaling Through Tnfr2 Protects Skin Against Oxidative Stress–Induced Inflammation. PLoS Biology, 2014, 12, e1001855.	5.6	55
53	Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention. PLoS Pathogens, 2014, 10, e1003959.	4.7	73
54	A Zebrafish Compound Screen Reveals Modulation of Neutrophil Reverse Migration as an Anti-Inflammatory Mechanism. Science Translational Medicine, 2014, 6, 225ra29.	12.4	229

#	Article	IF	CITATIONS
55	The IL-1 family in fish: Swimming through the muddy waters of inflammasome evolution. Developmental and Comparative Immunology, 2014, 46, 53-62.	2.3	40
56	Serum and Glucocorticoid–Regulated Kinase 1 Regulates Neutrophil Clearance during Inflammation Resolution. Journal of Immunology, 2014, 192, 1796-1805.	0.8	29
57	A Spaetzle-like role for nerve growth factor β in vertebrate immunity to <i>Staphylococcus aureus</i> . Science, 2014, 346, 641-646.	12.6	68
58	Hypoxia-inducible factor 2α regulates key neutrophil functions in humans, mice, and zebrafish. Blood, 2014, 123, 366-376.	1.4	124
59	pH-Sensitive Tubular Polymersomes: Formation and Applications in Cellular Delivery. ACS Nano, 2014, 8, 4650-4661.	14.6	91
60	Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells. FASEB Journal, 2013, 27, 98-108.	0.5	67
61	Zebrafish as a model for the study of neutrophil biology. Journal of Leukocyte Biology, 2013, 94, 633-642.	3.3	129
62	Zebrafish as a Novel Vertebrate Model To Dissect Enterococcal Pathogenesis. Infection and Immunity, 2013, 81, 4271-4279.	2.2	40
63	Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism. PLoS Pathogens, 2013, 9, e1003789.	4.7	129
64	Cxcl8 (IL-8) Mediates Neutrophil Recruitment and Behavior in the Zebrafish Inflammatory Response. Journal of Immunology, 2013, 190, 4349-4359.	0.8	294
65	Incremental shuttle walk test in the assessment of patients with obstructive sleep apnea–hypopnea syndrome. Journal of Sleep Research, 2013, 22, 471-477.	3.2	10
66	A Bayesian framework for identifying cell migration dynamics. , 2013, 2013, 3455-8.		0
67	Zebrafish tissue injury causes up-regulation of interleukin-1 and caspase dependent amplification of the inflammatory response. DMM Disease Models and Mechanisms, 2013, 7, 259-64.	2.4	58
68	Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo. Blood, 2013, 121, 2483-2493.	1.4	96
69	PhagoSight: An Open-Source MATLAB® Package for the Analysis of Fluorescent Neutrophil and Macrophage Migration in a Zebrafish Model. PLoS ONE, 2013, 8, e72636.	2.5	41
70	Deficiency of tumour necrosis factor-related apoptosis-inducing ligand exacerbates lung injury and fibrosis. Thorax, 2012, 67, 796-803.	5.6	31
71	A model 450 million years in the making: zebrafish and vertebrate immunity. DMM Disease Models and Mechanisms, 2012, 5, 38-47.	2.4	307
72	A Method for the <i>In Vivo</i> Measurement of Zebrafish Tissue Neutrophil Lifespan. ISRN Hematology, 2012, 2012, 1-6.	1.6	23

#	Article	IF	CITATIONS
73	Drift-Diffusion Analysis of Neutrophil Migration during Inflammation Resolution in a Zebrafish Model. Advances in Hematology, 2012, 2012, 1-8.	1.0	29
74	Local affine texture tracking for serial registration of zebrafish images. , 2012, , .		1
75	Repelled from the wound, or randomly dispersed? Reverse migration behaviour of neutrophils characterized by dynamic modelling. Journal of the Royal Society Interface, 2012, 9, 3229-3239.	3.4	55
76	Live Imaging of Tumor Initiation in Zebrafish Larvae Reveals a Trophic Role for Leukocyte-Derived PGE2. Current Biology, 2012, 22, 1253-1259.	3.9	109
77	Neutrophil-Delivered Myeloperoxidase Dampens the Hydrogen Peroxide Burst after Tissue Wounding in Zebrafish. Current Biology, 2012, 22, 1818-1824.	3.9	117
78	A Zebrafish Model to Study and Therapeutically Manipulate Hypoxia Signaling in Tumorigenesis. Cancer Research, 2012, 72, 4017-4027.	0.9	71
79	A privileged intraphagocyte niche is responsible for disseminated infection of <i> <scp>S</scp> taphylococcus aureus </i> in a zebrafish model. Cellular Microbiology, 2012, 14, 1600-1619.	2.1	107
80	The Neutrophil's Eye-View: Inference and Visualisation of the Chemoattractant Field Driving Cell Chemotaxis In Vivo. PLoS ONE, 2012, 7, e35182.	2.5	17
81	Effective Caspase Inhibition Blocks Neutrophil Apoptosis and Reveals Mcl-1 as Both a Regulator and a Target of Neutrophil Caspase Activation. PLoS ONE, 2011, 6, e15768.	2.5	48
82	Regulation of Neutrophil Senescence by MicroRNAs. PLoS ONE, 2011, 6, e15810.	2.5	65
83	Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thrombosis and Haemostasis, 2011, 105, 811-819.	3.4	182
84	Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood, 2011, 118, 712-722.	1.4	218
85	The NOTCH pathway contributes to cell fate decision in myelopoiesis. Haematologica, 2011, 96, 1753-1760.	3.5	15
86	TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. Journal of Leukocyte Biology, 2011, 90, 855-865.	3.3	126
87	Strategies of professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-associated microbes. Journal of Cell Science, 2011, 124, 3053-3059.	2.0	121
88	Measuring Inflammatory Cell Migration in the Zebrafish. Methods in Molecular Biology, 2011, 769, 261-275.	0.9	24
89	Zebrafish models of the immune response: taking it on the ChIn. BMC Biology, 2010, 8, 148.	3.8	3
90	<i>Burkholderia cenocepacia</i> Creates an Intramacrophage Replication Niche in Zebrafish Embryos, Followed by Bacterial Dissemination and Establishment of Systemic Infection. Infection and Immunity, 2010, 78, 1495-1508.	2.2	121

#	Article	IF	CITATIONS
91	Using in vivo zebrafish models to understand the biochemical basis of neutrophilic respiratory disease. Biochemical Society Transactions, 2009, 37, 830-837.	3.4	39
92	Pathways regulating lipopolysaccharideâ€induced neutrophil survival revealed by lentiviral transduction of primary human neutrophils. Immunology, 2009, 127, 249-255.	4.4	19
93	Oxazolone-Induced Enterocolitis in Zebrafish Depends on the Composition of the Intestinal Microbiota. Gastroenterology, 2009, 137, 1757-1767.e1.	1.3	121
94	Pivotal Advance: Pharmacological manipulation of inflammation resolution during spontaneously resolving tissue neutrophilia in the zebrafish. Journal of Leukocyte Biology, 2009, 87, 203-212.	3.3	115
95	A novel vertebrate model of <i>Staphylococcus aureus</i> infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cellular Microbiology, 2008, 10, 2312-2325.	2.1	185
96	Evolution of the Inflammatory Response in Vertebrates: Fish TNF-α Is a Powerful Activator of Endothelial Cells but Hardly Activates Phagocytes. Journal of Immunology, 2008, 181, 5071-5081.	0.8	176
97	Unraveling Tissue Regeneration Pathways Using Chemical Genetics. Journal of Biological Chemistry, 2007, 282, 35202-35210.	3.4	159
98	MODELING INFLAMMATION IN THE ZEBRAFISH: HOW A FISH CAN HELP US UNDERSTAND LUNG DISEASE. Experimental Lung Research, 2007, 33, 549-554.	1.2	42
99	Identifying and hurdling obstacles to translational research. Nature Reviews Immunology, 2007, 7, 77-82.	22.7	46
100	Granulocyte apoptosis in the pathogenesis and resolution of lung disease. Clinical Science, 2006, 110, 293-304.	4.3	55
101	A transgenic zebrafish model of neutrophilic inflammation. Blood, 2006, 108, 3976-3978.	1.4	915
102	Expression of pro-apoptotic Bfk isoforms reduces during malignant transformation in the human gastrointestinal tract. FEBS Letters, 2005, 579, 3646-3650.	2.8	16
103	Three Novel Bid Proteins Generated by Alternative Splicing of the Human Bid Gene. Journal of Biological Chemistry, 2004, 279, 2846-2855.	3.4	31
104	Acceleration of Human Neutrophil Apoptosis by TRAIL. Journal of Immunology, 2003, 170, 1027-1033.	0.8	164
105	Identification and Characterisation of 3 Novel Bid Isoforms. Clinical Science, 2002, 103, 54P-54P.	0.0	0
106	Inflammatory neutrophils retain susceptibility to apoptosis mediated via the Fas death receptor. Journal of Leukocyte Biology, 2000, 67, 662-668.	3.3	62
107	Apoptosis and the regulation of neutrophil lifespan. Biochemical Society Transactions, 1999, 27, 802-807.	3.4	57
108	Mechanisms of Neutrophil Apoptosis and the Regulation of Inflammation. Biochemical Society Transactions, 1999, 27, A134-A134.	3.4	1