Seung-Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8038012/publications.pdf

Version: 2024-02-01

41 papers 1,255 citations

331670 21 h-index 34 g-index

41 all docs

41 docs citations

41 times ranked

1907 citing authors

#	Article	IF	Citations
1	Downâ€regulated surfactant protein B in obese asthmatics. Clinical and Experimental Allergy, 2022, 52, 1321-1329.	2.9	2
2	Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 95-103.	5.7	61
3	Metabolic shift favoring C18:0 ceramide accumulation in obese asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2858-2866.	5.7	15
4	Osteopontin contributes to late-onset asthma phenotypes in adult asthma patients. Experimental and Molecular Medicine, 2020, 52, 253-265.	7.7	16
5	Ceramide/sphingosineâ€1â€phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1991-2004.	5.7	39
6	Trimethoprim-sulfamethoxazole induces acute pancreatitis associated with drug-specific cytotoxic T lymphocytes. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 336-338.	3.8	5
7	Engineering of anti-human interleukin-4 receptor alpha antibodies with potent antagonistic activity. Scientific Reports, 2019, 9, 7772.	3.3	23
8	Evaluation of Neutrophil Activation Status According to the Phenotypes of Adult Asthma. Allergy, Asthma and Immunology Research, 2019, 11, 381.	2.9	21
9	Sphingosine-1-Phosphate: Biomarker, Contributor, or Target for Asthma?. Allergy, Asthma and Immunology Research, 2019, 11, 299.	2.9	10
10	Efficacy and tolerability of desensitization in the treatment of delayed drug hypersensitivities to anti-tuberculosis medications. Respiratory Medicine, 2019, 147, 44-50.	2.9	22
11	Surfactant protein D alleviates eosinophilâ€mediated airway inflammation and remodeling in patients with aspirinâ€exacerbated respiratory disease. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 78-88.	5.7	24
12	Role of clusterin/progranulin in toluene diisocyanate-induced occupational asthma. Experimental and Molecular Medicine, 2018, 50, 1-10.	7.7	10
13	Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Experimental and Molecular Medicine, 2018, 50, 1-8.	7.7	59
14	Epithelial folliculin enhances airway inflammation in aspirinâ€exacerbated respiratory disease. Clinical and Experimental Allergy, 2018, 48, 1464-1473.	2.9	18
15	Toluene diisocyanate exposure induces airway inflammation of bronchial epithelial cells via the activation of transient receptor potential melastatin 8. Experimental and Molecular Medicine, 2017, 49, e299-e299.	7.7	11
16	Association of the miR-196a2, miR-146a, and miR-499 Polymorphisms with Asthma Phenotypes in a Korean Population. Molecular Diagnosis and Therapy, 2017, 21, 547-554.	3.8	24
17	<scp>CD</scp> 8 ⁺ Tâ€cell activation by methazolamide causes methazolamideâ€induced Stevens <i>â€"</i> Johnson syndrome and toxic epidermal necrolysis. Clinical and Experimental Allergy, 2017, 47, 972-974.	2.9	8
18	Epithelial folliculin is involved in airway inflammation in workers exposed to toluene diisocyanate. Experimental and Molecular Medicine, 2017, 49, e395-e395.	7.7	17

#	Article	IF	Citations
19	Integrative information theoretic network analysis for genome-wide association study of aspirin exacerbated respiratory disease in Korean population. BMC Medical Genomics, 2017, 10, 31.	1.5	12
20	Metabolomic analysis identifies potential diagnostic biomarkers for aspirinâ€exacerbated respiratory disease. Clinical and Experimental Allergy, 2017, 47, 37-47.	2.9	37
21	Neutrophil autophagy and extracellular <scp>DNA</scp> traps contribute to airway inflammation in severe asthma. Clinical and Experimental Allergy, 2017, 47, 57-70.	2.9	143
22	Neutrophil Extracellular DNA Traps Induce Autoantigen Production by Airway Epithelial Cells. Mediators of Inflammation, 2017, 2017, 1-7.	3.0	23
23	A Role of the ABCC4 Gene Polymorphism in Airway Inflammation of Asthmatics. Mediators of Inflammation, 2017, 2017, 1-7.	3.0	6
24	Exploration of the Sphingolipid Metabolite, Sphingosine-1-phosphate and Sphingosine, as Novel Biomarkers for Aspirin-exacerbated Respiratory Disease. Scientific Reports, 2016, 6, 36599.	3.3	33
25	A highly sensitive and selective impedimetric aptasensor for interleukin-17 receptor A. Biosensors and Bioelectronics, 2016, 81, 80-86.	10.1	25
26	Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma. Korean Journal of Internal Medicine, 2016, 31, 375-385.	1.7	49
27	Association of <i>TLR3 </i> gene polymorphism with IgG subclass deficiency and the severity in patients with aspirin-intolerant asthma. Allergy Asthma & Respiratory Disease, 2016, 4, 264.	0.2	0
28	Dipeptidyl-peptidase 10 as a genetic biomarker for the aspirin-exacerbated respiratory disease phenotype. Annals of Allergy, Asthma and Immunology, 2015, 114, 208-213.	1.0	33
29	Effects of MBL2 polymorphisms in patients with diisocyanate-induced occupational asthma. Experimental and Molecular Medicine, 2015, 47, e157-e157.	7.7	10
30	The SNP rs3128965 of HLA-DPB1 as a Genetic Marker of the AERD Phenotype. PLoS ONE, 2014, 9, e111220.	2.5	19
31	Elevated platelet activation in patients with chronic urticaria: a comparison between aspirin-intolerant and aspirin-tolerant groups. Annals of Allergy, Asthma and Immunology, 2014, 113, 276-281.	1.0	16
32	Genetics of Hypersensitivity to Aspirin and Nonsteroidal Anti-inflammatory Drugs. Immunology and Allergy Clinics of North America, 2013, 33, 177-194.	1.9	36
33	Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clinical and Experimental Allergy, 2013, 43, 425-433.	2.9	142
34	Role of <i>Toll-like Receptor 3 </i> Variants in Aspirin-Exacerbated Respiratory Disease. Allergy, Asthma and Immunology Research, 2011, 3, 123.	2.9	25
35	Association of the CCR3 gene polymorphism with aspirin exacerbated respiratory disease. Respiratory Medicine, 2010, 104, 626-632.	2.9	20
36	Alphaâ€Tâ€catenin (<i>CTNNA3</i>) gene was identified as a risk variant for toluene diisocyanateâ€induced asthma by genomeâ€wide association analysis. Clinical and Experimental Allergy, 2009, 39, 203-212.	2.9	95

#	Article	IF	CITATIONS
37	Association of Four-locus Gene Interaction with Aspirin-intolerant Asthma in Korean Asthmatics. Journal of Clinical Immunology, 2008, 28, 336-342.	3.8	22
38	A polymorphism of MS4A2 (\cdot 109T>C) encoding the beta-chain of the high-affinity immunoglobulin E receptor (FceR1beta) is associated with a susceptibility to aspirin-intolerant asthma. Clinical and Experimental Allergy, 2006, 36, 877-883.	2.9	54
39	Relationship between neurokinin 2 receptor gene polymorphisms and serum vascular endothelial growth factor levels in patients with toluene diisocyanate-induced asthma. Clinical and Experimental Allergy, 2006, 36, 1153-1160.	2.9	17
40	Chestnut as a Food Allergen: Identification of Major Allergens. Journal of Korean Medical Science, 2005, 20, 573.	2.5	21
41	Increased levels of IgG to cytokeratin 19 in sera of patients with toluene diisocyanate-induced asthma. Annals of Allergy, Asthma and Immunology, 2004, 93, 293-298.	1.0	32