Dalong Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803751/publications.pdf

Version: 2024-02-01

45317 57758 10,004 87 44 90 citations h-index g-index papers 96 96 96 10300 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Nanostructured polyvinylpyrrolidone-curcumin conjugates allowed for kidney-targeted treatment of cisplatin induced acute kidney injury. Bioactive Materials, 2023, 19, 282-291.	15.6	17
2	A novel antibacterial and antifouling nanocomposite coated endotracheal tube to prevent ventilator-associated pneumonia. Journal of Nanobiotechnology, 2022, 20, 112.	9.1	9
3	High relaxivity Gd3+-based organic nanoparticles for efficient magnetic resonance angiography. Journal of Nanobiotechnology, 2022, 20, 170.	9.1	5
4	Openâ€Shell Nanosensitizers for Glutathione Responsive Cancer Sonodynamic Therapy. Advanced Materials, 2022, 34, e2110283.	21.0	48
5	Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal—organic nanosonosensitizer. Nano Research, 2022, 15, 6340-6347.	10.4	5
6	Acid Neutralization and Immune Regulation by Calcium–Aluminum-Layered Double Hydroxide for Osteoporosis Reversion. Journal of the American Chemical Society, 2022, 144, 8987-8999.	13.7	30
7	Internally Responsive Nanomaterials for Activatable Multimodal Imaging of Cancer. Advanced Healthcare Materials, 2021, 10, e2000690.	7.6	35
8	Tumor chemical suffocation therapy by dual respiratory inhibitions. Chemical Science, 2021, 12, 7763-7769.	7.4	14
9	Regulating water states by vacancies for cancer therapy. Nano Today, 2021, 37, 101099.	11.9	14
10	Antioxidant and C5a-blocking strategy for hepatic ischemia–reperfusion injury repair. Journal of Nanobiotechnology, 2021, 19, 107.	9.1	13
11	Ultrasmall Porous Silica Nanoparticles with Enhanced Pharmacokinetics for Cancer Theranostics. Nano Letters, 2021, 21, 4692-4699.	9.1	30
12	Wafer-scale heterostructured piezoelectric bio-organic thin films. Science, 2021, 373, 337-342.	12.6	129
13	Long-term in vivo operation of implanted cardiac nanogenerators in swine. Nano Energy, 2021, 90, 106507.	16.0	19
14	Endogenous Copper for Nanocatalytic Oxidative Damage and Self-Protection Pathway Breakage of Cancer. ACS Nano, 2021, 15, 16286-16297.	14.6	35
15	Second near-infrared photothermal-amplified immunotherapy using photoactivatable composite nanostimulators. Journal of Nanobiotechnology, 2021, 19, 433.	9.1	29
16	Spatiotemporal Distribution of Agrin after Intrathecal Injection and Its Protective Role in Cerebral Ischemia/Reperfusion Injury. Advanced Science, 2020, 7, 1902600.	11.2	5
17	Alpha lipoic acid antagonizes cytotoxicity of cobalt nanoparticles by inhibiting ferroptosis-like cell death. Journal of Nanobiotechnology, 2020, 18, 141.	9.1	35
18	Nanomedicines for Renal Management: From Imaging to Treatment. Accounts of Chemical Research, 2020, 53, 1869-1880.	15.6	57

#	Article	IF	CITATIONS
19	Tumor Immune Microenvironments (TIMEs): Responsive Nanoplatforms for Antitumor Immunotherapy. Frontiers in Chemistry, 2020, 8, 804.	3.6	6
20	In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. Nano Research, 2020, 13, 3217-3223.	10.4	17
21	Sulfoxideâ€Containing Polymerâ€Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.	11.2	43
22	Efficient Gene Therapy of Pancreatic Cancer via a Peptide Nucleic Acid (PNA)‣oaded Layered Double Hydroxides (LDH) Nanoplatform. Small, 2020, 16, e1907233.	10.0	34
23	86/90Y-Labeled Monoclonal Antibody Targeting Tissue Factor for Pancreatic Cancer Theranostics. Molecular Pharmaceutics, 2020, 17, 1697-1705.	4.6	19
24	Smart Tumor Microenvironmentâ∈Responsive Nanotheranostic Agent for Effective Cancer Therapy. Advanced Functional Materials, 2020, 30, 2000486.	14.9	39
25	Combined Magnetic Hyperthermia and Immune Therapy for Primary and Metastatic Tumor Treatments. ACS Nano, 2020, 14, 1033-1044.	14.6	161
26	Multimodality Imaging Agents with PET as the Fundamental Pillar. Angewandte Chemie - International Edition, 2019, 58, 2570-2579.	13.8	62
27	Multimodale Kontrastmittel f $\tilde{A}^{1}\!\!/\!\!4$ r die kombinierte Positronenemissionstomographie. Angewandte Chemie, 2019, 131, 2592-2602.	2.0	8
28	Ceria Nanoparticles Meet Hepatic Ischemiaâ€Reperfusion Injury: The Perfect Imperfection. Advanced Materials, 2019, 31, e1902956.	21.0	150
29	Intrathecal Administration of Nanoclusters for Protecting Neurons against Oxidative Stress in Cerebral Ischemia/Reperfusion Injury. ACS Nano, 2019, 13, 13382-13389.	14.6	53
30	Smart H ₂ Sâ€Triggered/Therapeutic System (SHTS)â€Based Nanomedicine. Advanced Science, 2019, 6, 1901724.	11.2	55
31	A "Missileâ€Detonation―Strategy to Precisely Supply and Efficiently Amplify Cerenkov Radiation Energy for Cancer Theranostics. Advanced Materials, 2019, 31, e1904894.	21.0	35
32	A Melaninâ∈Based Natural Antioxidant Defense Nanosystem for Theranostic Application in Acute Kidney Injury. Advanced Functional Materials, 2019, 29, 1904833.	14.9	111
33	Aptamer-Conjugated Framework Nucleic Acids for the Repair of Cerebral Ischemia-Reperfusion Injury. Nano Letters, 2019, 19, 7334-7341.	9.1	51
34	Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48, 3683-3704.	38.1	1,101
35	Bovine serum albumin-templated nanoplatform for magnetic resonance imaging-guided chemodynamic therapy. Journal of Nanobiotechnology, 2019, 17, 68.	9.1	41
36	Radionuklidaktivierte Nanomaterialien und ihre biomedizinische Anwendung. Angewandte Chemie, 2019, 131, 13366-13387.	2.0	5

#	Article	IF	Citations
37	Radionuclideâ€Activated Nanomaterials and Their Biomedical Applications. Angewandte Chemie - International Edition, 2019, 58, 13232-13252.	13.8	43
38	Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo. Journal of Nanobiotechnology, 2019, 17, 123.	9.1	15
39	Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function. Nano Research, 2019, 12, 637-642.	10.4	34
40	Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Accounts of Chemical Research, 2018, 51, 778-788.	15.6	77
41	Radiolabeled polyoxometalate clusters: Kidney dysfunction evaluation and tumor diagnosis by positron emission tomography imaging. Biomaterials, 2018, 171, 144-152.	11.4	42
42	Reassembly of ⁸⁹ Zrâ€Labeled Cancer Cell Membranes into Multicompartment Membraneâ€Derived Liposomes for PETâ€Trackable Tumorâ€Targeted Theranostics. Advanced Materials, 2018, 30, e1704934.	21.0	86
43	Noninvasive Trafficking of Brentuximab Vedotin and PET Imaging of CD30 in Lung Cancer Murine Models. Molecular Pharmaceutics, 2018, 15, 1627-1634.	4.6	19
44	Efficient Uptake of ¹⁷⁷ Luâ€Porphyrinâ€PEG Nanocomplexes by Tumor Mitochondria for Multimodalâ€Imagingâ€Guided Combination Therapy. Angewandte Chemie - International Edition, 2018, 57, 218-222.	13.8	85
45	In Vivo MR Imaging of Glioma Recruitment of Adoptive Tâ€Cells Labeled with NaGdF ₄ ‶AT Nanoprobes. Small, 2018, 14, 1702951.	10.0	26
46	Efficient Uptake of ¹⁷⁷ Luâ€Porphyrinâ€PEG Nanocomplexes by Tumor Mitochondria for Multimodalâ€Imagingâ€Guided Combination Therapy. Angewandte Chemie, 2018, 130, 224-228.	2.0	10
47	DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nature Biomedical Engineering, 2018, 2, 865-877.	22.5	297
48	Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nature Communications, 2018, 9, 5421.	12.8	184
49	Effective Wound Healing Enabled by Discrete Alternative Electric Fields from Wearable Nanogenerators. ACS Nano, 2018, 12, 12533-12540.	14.6	234
50	Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy. Journal of the American Chemical Society, 2018, 140, 14971-14979.	13.7	148
51	Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Research, $2018, 11, 4955-4984$.	10.4	199
52	Harness the Power of Upconversion Nanoparticles for Spectral Computed Tomography Diagnosis of Osteosarcoma. Advanced Functional Materials, 2018, 28, 1802656.	14.9	30
53	Fe–Au Nanoparticleâ€Coupling for Ultrasensitive Detections of Circulating Tumor DNA. Advanced Materials, 2018, 30, e1801690.	21.0	49
54	PET Imaging of Receptor Tyrosine Kinases in Cancer. Molecular Cancer Therapeutics, 2018, 17, 1625-1636.	4.1	35

#	Article	IF	CITATIONS
55	Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Materials Horizons, 2018, 5, 946-952.	12.2	108
56	Exogenous Amino Acidâ€Loaded Nanovehicles: Stepping across Endogenous Magnetic Resonance Spectroscopy. Advanced Healthcare Materials, 2018, 7, 1800317.	7.6	3
57	Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nature Nanotechnology, 2017, 12, 378-386.	31.5	345
58	Targeting Upconversion Nanoprobes for Magnetic Resonance Imaging of Early Colon Cancer. Particle and Particle Systems Characterization, 2017, 34, 1600393.	2.3	4
59	Bioresponsive Polyoxometalate Cluster for Redox-Activated Photoacoustic Imaging-Guided Photothermal Cancer Therapy. Nano Letters, 2017, 17, 3282-3289.	9.1	135
60	Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy. ACS Nano, 2017, 11, 5233-5237.	14.6	109
61	Oxygen Vacancy Enables Markedly Enhanced Magnetic Resonance Imaging-Guided Photothermal Therapy of a Gd ³⁺ -Doped Contrast Agent. ACS Nano, 2017, 11, 4256-4264.	14.6	94
62	Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chemical Society Reviews, 2017, 46, 7438-7468.	38.1	358
63	Antiferromagnetic Pyrite as the Tumor Microenvironmentâ€Mediated Nanoplatform for Selfâ€Enhanced Tumor Imaging and Therapy. Advanced Materials, 2017, 29, 1701683.	21.0	458
64	Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials, 2017, 141, 86-95.	11.4	220
65	Engineering of Hybrid Upconversion Nanoparticles for Biodetection and Cancer Imaging. , 2017, , 192-220.		0
66	Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction. Angewandte Chemie, 2016, 128, 2141-2146.	2.0	130
67	High-Performance Upconversion Nanoprobes for Multimodal MR Imaging of Acute Ischemic Stroke. Small, 2016, 12, 3591-3600.	10.0	30
68	Sensitive imaging and effective capture of Cu2+: Towards highly efficient theranostics of Alzheimer's disease. Biomaterials, 2016, 104, 158-167.	11.4	64
69	Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Research, 2016, 9, 3257-3266.	10.4	45
70	A Polyoxometalate Cluster Paradigm with Self-Adaptive Electronic Structure for Acidity/Reducibility-Specific Photothermal Conversion. Journal of the American Chemical Society, 2016, 138, 8156-8164.	13.7	168
71	Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction. Angewandte Chemie - International Edition, 2016, 55, 2101-2106.	13.8	930
72	PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials, 2016, 76, 218-225.	11.4	90

#	Article	IF	CITATIONS
7 3	Integrating Anatomic and Functional Dual-Mode Magnetic Resonance Imaging: Design and Applicability of a Bifunctional Contrast Agent. ACS Nano, 2016, 10, 3783-3790.	14.6	44
74	Xâ€ray Radiationâ€Controlled NOâ€Release for Onâ€Demand Depthâ€Independent Hypoxic Radiosensitization. Angewandte Chemie - International Edition, 2015, 54, 14026-14030.	13.8	241
7 5	Hypoxia Induced by Upconversionâ€Based Photodynamic Therapy: Towards Highly Effective Synergistic Bioreductive Therapy in Tumors. Angewandte Chemie, 2015, 127, 8223-8227.	2.0	77
76	Hypoxia Induced by Upconversionâ€Based Photodynamic Therapy: Towards Highly Effective Synergistic Bioreductive Therapy in Tumors. Angewandte Chemie - International Edition, 2015, 54, 8105-8109.	13.8	374
77	Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy. Nano Research, 2015, 8, 3580-3590.	10.4	100
78	Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 2015, 69, 89-98.	11.4	76
79	BaHoF 5 nanoprobes as high-performance contrast agents for multi-modal CT imaging of ischemic stroke. Biomaterials, 2015, 71, 110-118.	11.4	34
80	Marriage of Scintillator and Semiconductor for Synchronous Radiotherapy and Deep Photodynamic Therapy with Diminished Oxygen Dependence. Angewandte Chemie - International Edition, 2015, 54, 1770-1774.	13.8	420
81	Single Ho ³⁺ â€Doped Upconversion Nanoparticles for Highâ€Performance <i>T</i> ₂ â€Weighted Brain Tumor Diagnosis and MR/UCL/CT Multimodal Imaging. Advanced Functional Materials, 2014, 24, 6613-6620.	14.9	131
82	Brain Tumors: Single Ho ³⁺ â€Doped Upconversion Nanoparticles for Highâ€Performance <i>T</i> ₂ â€Weighted Brain Tumor Diagnosis and MR/UCL/CT Multimodal Imaging (Adv. Funct.) Tj E	Г Q.фО 90 0 г	g & T /Overlo
83	Nanodots: Ultrasmall NaGdF ₄ Nanodots for Efficient MR Angiography and Atherosclerotic Plaque Imaging (Adv. Mater. 23/2014). Advanced Materials, 2014, 26, 3980-3980.	21.0	1
84	Dual-Targeting Upconversion Nanoprobes across the Blood–Brain Barrier for Magnetic Resonance/Fluorescence Imaging of Intracranial Glioblastoma. ACS Nano, 2014, 8, 1231-1242.	14.6	279
85	Ultrasmall NaGdF ₄ Nanodots for Efficient MR Angiography and Atherosclerotic Plaque Imaging. Advanced Materials, 2014, 26, 3867-3872.	21.0	158
86	A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials, 2014, 35, 8992-9002.	11.4	234
87	Rattle-Structured Multifunctional Nanotheranostics for Synergetic Chemo-/Radiotherapy and Simultaneous Magnetic/Luminescent Dual-Mode Imaging. Journal of the American Chemical Society, 2013, 135, 6494-6503.	13.7	318