
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803751/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48, 3683-3704.                                                                                                        | 38.1 | 1,101     |
| 2  | Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction. Angewandte Chemie - International Edition, 2016, 55, 2101-2106.                                       | 13.8 | 930       |
| 3  | Antiferromagnetic Pyrite as the Tumor Microenvironmentâ€Mediated Nanoplatform for Selfâ€Enhanced<br>Tumor Imaging and Therapy. Advanced Materials, 2017, 29, 1701683.                                                | 21.0 | 458       |
| 4  | Marriage of Scintillator and Semiconductor for Synchronous Radiotherapy and Deep Photodynamic<br>Therapy with Diminished Oxygen Dependence. Angewandte Chemie - International Edition, 2015, 54,<br>1770-1774.       | 13.8 | 420       |
| 5  | Hypoxia Induced by Upconversionâ€Based Photodynamic Therapy: Towards Highly Effective Synergistic<br>Bioreductive Therapy in Tumors. Angewandte Chemie - International Edition, 2015, 54, 8105-8109.                 | 13.8 | 374       |
| 6  | Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chemical Society Reviews, 2017, 46, 7438-7468.                                                                                 | 38.1 | 358       |
| 7  | Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nature<br>Nanotechnology, 2017, 12, 378-386.                                                                                | 31.5 | 345       |
| 8  | Rattle-Structured Multifunctional Nanotheranostics for Synergetic Chemo-/Radiotherapy and<br>Simultaneous Magnetic/Luminescent Dual-Mode Imaging. Journal of the American Chemical Society,<br>2013, 135, 6494-6503. | 13.7 | 318       |
| 9  | DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury.<br>Nature Biomedical Engineering, 2018, 2, 865-877.                                                              | 22.5 | 297       |
| 10 | Dual-Targeting Upconversion Nanoprobes across the Blood–Brain Barrier for Magnetic<br>Resonance/Fluorescence Imaging of Intracranial Glioblastoma. ACS Nano, 2014, 8, 1231-1242.                                     | 14.6 | 279       |
| 11 | Xâ€ray Radiation ontrolled NOâ€Release for Onâ€Demand Depthâ€Independent Hypoxic Radiosensitization.<br>Angewandte Chemie - International Edition, 2015, 54, 14026-14030.                                            | 13.8 | 241       |
| 12 | A smart upconversion-based mesoporous silica nanotheranostic system for synergetic<br>chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials, 2014, 35,<br>8992-9002.                      | 11.4 | 234       |
| 13 | Effective Wound Healing Enabled by Discrete Alternative Electric Fields from Wearable<br>Nanogenerators. ACS Nano, 2018, 12, 12533-12540.                                                                            | 14.6 | 234       |
| 14 | Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials, 2017, 141, 86-95.                                                                          | 11.4 | 220       |
| 15 | Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Research, 2018, 11, 4955-4984.                                                                                                           | 10.4 | 199       |
| 16 | Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nature<br>Communications, 2018, 9, 5421.                                                                               | 12.8 | 184       |
| 17 | A Polyoxometalate Cluster Paradigm with Self-Adaptive Electronic Structure for<br>Acidity/Reducibility-Specific Photothermal Conversion. Journal of the American Chemical Society,<br>2016, 138, 8156-8164.          | 13.7 | 168       |
| 18 | Combined Magnetic Hyperthermia and Immune Therapy for Primary and Metastatic Tumor Treatments.<br>ACS Nano, 2020, 14, 1033-1044.                                                                                     | 14.6 | 161       |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ultrasmall NaGdF <sub>4</sub> Nanodots for Efficient MR Angiography and Atherosclerotic Plaque<br>Imaging. Advanced Materials, 2014, 26, 3867-3872.                                                                                 | 21.0 | 158       |
| 20 | Ceria Nanoparticles Meet Hepatic Ischemiaâ€Reperfusion Injury: The Perfect Imperfection. Advanced<br>Materials, 2019, 31, e1902956.                                                                                                 | 21.0 | 150       |
| 21 | Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy.<br>Journal of the American Chemical Society, 2018, 140, 14971-14979.                                                               | 13.7 | 148       |
| 22 | Bioresponsive Polyoxometalate Cluster for Redox-Activated Photoacoustic Imaging-Guided<br>Photothermal Cancer Therapy. Nano Letters, 2017, 17, 3282-3289.                                                                           | 9.1  | 135       |
| 23 | Single Ho <sup>3+</sup> â€Doped Upconversion Nanoparticles for Highâ€Performance<br><i>T</i> <sub>2</sub> â€Weighted Brain Tumor Diagnosis and MR/UCL/CT Multimodal Imaging. Advanced<br>Functional Materials, 2014, 24, 6613-6620. | 14.9 | 131       |
| 24 | Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton<br>Reaction. Angewandte Chemie, 2016, 128, 2141-2146.                                                                          | 2.0  | 130       |
| 25 | Wafer-scale heterostructured piezoelectric bio-organic thin films. Science, 2021, 373, 337-342.                                                                                                                                     | 12.6 | 129       |
| 26 | A Melaninâ€Based Natural Antioxidant Defense Nanosystem for Theranostic Application in Acute Kidney<br>Injury. Advanced Functional Materials, 2019, 29, 1904833.                                                                    | 14.9 | 111       |
| 27 | Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy. ACS Nano, 2017, 11, 5233-5237.                                                                                                                               | 14.6 | 109       |
| 28 | Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Materials Horizons, 2018, 5, 946-952.                                                                           | 12.2 | 108       |
| 29 | Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy. Nano Research, 2015, 8, 3580-3590.                                      | 10.4 | 100       |
| 30 | Oxygen Vacancy Enables Markedly Enhanced Magnetic Resonance Imaging-Guided Photothermal<br>Therapy of a Gd <sup>3+</sup> -Doped Contrast Agent. ACS Nano, 2017, 11, 4256-4264.                                                      | 14.6 | 94        |
| 31 | PECylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials, 2016, 76, 218-225.                                                              | 11.4 | 90        |
| 32 | Reassembly of <sup>89</sup> Zr‣abeled Cancer Cell Membranes into Multicompartment<br>Membraneâ€Derived Liposomes for PETâ€Trackable Tumorâ€Targeted Theranostics. Advanced Materials, 2018,<br>30, e1704934.                        | 21.0 | 86        |
| 33 | Efficient Uptake of <sup>177</sup> Luâ€Porphyrinâ€PEG Nanocomplexes by Tumor Mitochondria for<br>Multimodalâ€Imagingâ€Guided Combination Therapy. Angewandte Chemie - International Edition, 2018, 57,<br>218-222.                  | 13.8 | 85        |
| 34 | Hypoxia Induced by Upconversionâ€Based Photodynamic Therapy: Towards Highly Effective Synergistic<br>Bioreductive Therapy in Tumors. Angewandte Chemie, 2015, 127, 8223-8227.                                                       | 2.0  | 77        |
| 35 | Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and<br>Applications. Accounts of Chemical Research, 2018, 51, 778-788.                                                           | 15.6 | 77        |
| 36 | Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials, 2015, 69, 89-98.                                                                        | 11.4 | 76        |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Sensitive imaging and effective capture of Cu2+: Towards highly efficient theranostics of Alzheimer's disease. Biomaterials, 2016, 104, 158-167.                          | 11.4 | 64        |
| 38 | Multimodality Imaging Agents with PET as the Fundamental Pillar. Angewandte Chemie - International<br>Edition, 2019, 58, 2570-2579.                                       | 13.8 | 62        |
| 39 | Nanomedicines for Renal Management: From Imaging to Treatment. Accounts of Chemical Research, 2020, 53, 1869-1880.                                                        | 15.6 | 57        |
| 40 | Smart H <sub>2</sub> Sâ€Triggered/Therapeutic System (SHTS)â€Based Nanomedicine. Advanced Science,<br>2019, 6, 1901724.                                                   | 11.2 | 55        |
| 41 | Intrathecal Administration of Nanoclusters for Protecting Neurons against Oxidative Stress in Cerebral Ischemia/Reperfusion Injury. ACS Nano, 2019, 13, 13382-13389.      | 14.6 | 53        |
| 42 | Aptamer-Conjugated Framework Nucleic Acids for the Repair of Cerebral Ischemia-Reperfusion Injury.<br>Nano Letters, 2019, 19, 7334-7341.                                  | 9.1  | 51        |
| 43 | Fe–Au Nanoparticle oupling for Ultrasensitive Detections of Circulating Tumor DNA. Advanced<br>Materials, 2018, 30, e1801690.                                             | 21.0 | 49        |
| 44 | Openâ€ <b>S</b> hell Nanosensitizers for Glutathione Responsive Cancer Sonodynamic Therapy. Advanced<br>Materials, 2022, 34, e2110283.                                    | 21.0 | 48        |
| 45 | Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Research, 2016, 9, 3257-3266.        | 10.4 | 45        |
| 46 | Integrating Anatomic and Functional Dual-Mode Magnetic Resonance Imaging: Design and Applicability of a Bifunctional Contrast Agent. ACS Nano, 2016, 10, 3783-3790.       | 14.6 | 44        |
| 47 | Radionuclideâ€Activated Nanomaterials and Their Biomedical Applications. Angewandte Chemie -<br>International Edition, 2019, 58, 13232-13252.                             | 13.8 | 43        |
| 48 | Sulfoxideâ€Containing Polymerâ€Coated Nanoparticles Demonstrate Minimal Protein Fouling and<br>Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.            | 11.2 | 43        |
| 49 | Radiolabeled polyoxometalate clusters: Kidney dysfunction evaluation and tumor diagnosis by positron emission tomography imaging. Biomaterials, 2018, 171, 144-152.       | 11.4 | 42        |
| 50 | Bovine serum albumin-templated nanoplatform for magnetic resonance imaging-guided chemodynamic therapy. Journal of Nanobiotechnology, 2019, 17, 68.                       | 9.1  | 41        |
| 51 | Smart Tumor Microenvironmentâ€Responsive Nanotheranostic Agent for Effective Cancer Therapy.<br>Advanced Functional Materials, 2020, 30, 2000486.                         | 14.9 | 39        |
| 52 | PET Imaging of Receptor Tyrosine Kinases in Cancer. Molecular Cancer Therapeutics, 2018, 17, 1625-1636.                                                                   | 4.1  | 35        |
| 53 | A "Missileâ€Detonation―Strategy to Precisely Supply and Efficiently Amplify Cerenkov Radiation Energy<br>for Cancer Theranostics. Advanced Materials, 2019, 31, e1904894. | 21.0 | 35        |
| 54 | Alpha lipoic acid antagonizes cytotoxicity of cobalt nanoparticles by inhibiting ferroptosis-like cell<br>death. Journal of Nanobiotechnology, 2020, 18, 141.             | 9.1  | 35        |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Internally Responsive Nanomaterials for Activatable Multimodal Imaging of Cancer. Advanced<br>Healthcare Materials, 2021, 10, e2000690.                                               | 7.6  | 35        |
| 56 | Endogenous Copper for Nanocatalytic Oxidative Damage and Self-Protection Pathway Breakage of Cancer. ACS Nano, 2021, 15, 16286-16297.                                                 | 14.6 | 35        |
| 57 | BaHoF 5 nanoprobes as high-performance contrast agents for multi-modal CT imaging of ischemic stroke. Biomaterials, 2015, 71, 110-118.                                                | 11.4 | 34        |
| 58 | Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function. Nano Research, 2019, 12, 637-642.                                      | 10.4 | 34        |
| 59 | Efficient Gene Therapy of Pancreatic Cancer via a Peptide Nucleic Acid (PNA)‣oaded Layered Double<br>Hydroxides (LDH) Nanoplatform. Small, 2020, 16, e1907233.                        | 10.0 | 34        |
| 60 | High-Performance Upconversion Nanoprobes for Multimodal MR Imaging of Acute Ischemic Stroke.<br>Small, 2016, 12, 3591-3600.                                                           | 10.0 | 30        |
| 61 | Harness the Power of Upconversion Nanoparticles for Spectral Computed Tomography Diagnosis of Osteosarcoma. Advanced Functional Materials, 2018, 28, 1802656.                         | 14.9 | 30        |
| 62 | Ultrasmall Porous Silica Nanoparticles with Enhanced Pharmacokinetics for Cancer Theranostics.<br>Nano Letters, 2021, 21, 4692-4699.                                                  | 9.1  | 30        |
| 63 | Acid Neutralization and Immune Regulation by Calcium–Aluminum-Layered Double Hydroxide for<br>Osteoporosis Reversion. Journal of the American Chemical Society, 2022, 144, 8987-8999. | 13.7 | 30        |
| 64 | Second near-infrared photothermal-amplified immunotherapy using photoactivatable composite nanostimulators. Journal of Nanobiotechnology, 2021, 19, 433.                              | 9.1  | 29        |
| 65 | In Vivo MR Imaging of Glioma Recruitment of Adoptive T ells Labeled with NaGdF <sub>4</sub> â€TAT<br>Nanoprobes. Small, 2018, 14, 1702951.                                            | 10.0 | 26        |
| 66 | Noninvasive Trafficking of Brentuximab Vedotin and PET Imaging of CD30 in Lung Cancer Murine<br>Models. Molecular Pharmaceutics, 2018, 15, 1627-1634.                                 | 4.6  | 19        |
| 67 | 86/90Y-Labeled Monoclonal Antibody Targeting Tissue Factor for Pancreatic Cancer Theranostics.<br>Molecular Pharmaceutics, 2020, 17, 1697-1705.                                       | 4.6  | 19        |
| 68 | Long-term in vivo operation of implanted cardiac nanogenerators in swine. Nano Energy, 2021, 90,<br>106507.                                                                           | 16.0 | 19        |
| 69 | In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. Nano Research, 2020, 13, 3217-3223.                                            | 10.4 | 17        |
| 70 | Nanostructured polyvinylpyrrolidone-curcumin conjugates allowed for kidney-targeted treatment of cisplatin induced acute kidney injury. Bioactive Materials, 2023, 19, 282-291.       | 15.6 | 17        |
| 71 | Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo. Journal of Nanobiotechnology, 2019, 17, 123.                              | 9.1  | 15        |
| 72 | Tumor chemical suffocation therapy by dual respiratory inhibitions. Chemical Science, 2021, 12, 7763-7769.                                                                            | 7.4  | 14        |

| #  | Article                                                                                                                                                                                                      | IF                 | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|
| 73 | Regulating water states by vacancies for cancer therapy. Nano Today, 2021, 37, 101099.                                                                                                                       | 11.9               | 14          |
| 74 | Antioxidant and C5a-blocking strategy for hepatic ischemia–reperfusion injury repair. Journal of<br>Nanobiotechnology, 2021, 19, 107.                                                                        | 9.1                | 13          |
| 75 | Efficient Uptake of <sup>177</sup> Luâ€Porphyrinâ€PEG Nanocomplexes by Tumor Mitochondria for<br>Multimodalâ€Imagingâ€Guided Combination Therapy. Angewandte Chemie, 2018, 130, 224-228.                     | 2.0                | 10          |
| 76 | A novel antibacterial and antifouling nanocomposite coated endotracheal tube to prevent ventilator-associated pneumonia. Journal of Nanobiotechnology, 2022, 20, 112.                                        | 9.1                | 9           |
| 77 | Multimodale Kontrastmittel für die kombinierte Positronenemissionstomographie. Angewandte<br>Chemie, 2019, 131, 2592-2602.                                                                                   | 2.0                | 8           |
| 78 | Tumor Immune Microenvironments (TIMEs): Responsive Nanoplatforms for Antitumor Immunotherapy.<br>Frontiers in Chemistry, 2020, 8, 804.                                                                       | 3.6                | 6           |
| 79 | Radionuklidaktivierte Nanomaterialien und ihre biomedizinische Anwendung. Angewandte Chemie, 2019, 131, 13366-13387.                                                                                         | 2.0                | 5           |
| 80 | Spatiotemporal Distribution of Agrin after Intrathecal Injection and Its Protective Role in Cerebral<br>Ischemia/Reperfusion Injury. Advanced Science, 2020, 7, 1902600.                                     | 11.2               | 5           |
| 81 | High relaxivity Gd3+-based organic nanoparticles for efficient magnetic resonance angiography.<br>Journal of Nanobiotechnology, 2022, 20, 170.                                                               | 9.1                | 5           |
| 82 | Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal—organic nanosonosensitizer. Nano Research, 2022, 15, 6340-6347.                                  | 10.4               | 5           |
| 83 | Brain Tumors: Single Ho <sup>3+</sup> â€Doped Upconversion Nanoparticles for Highâ€Performance<br><i>T</i> <sub>2</sub> â€Weighted Brain Tumor Diagnosis and MR/UCL/CT Multimodal Imaging (Adv. Funct.) Tj E | TQ <b>41</b> 91 0. | 7841314 rg8 |
| 84 | Targeting Upconversion Nanoprobes for Magnetic Resonance Imaging of Early Colon Cancer. Particle and Particle Systems Characterization, 2017, 34, 1600393.                                                   | 2.3                | 4           |
| 85 | Exogenous Amino Acidâ€Loaded Nanovehicles: Stepping across Endogenous Magnetic Resonance<br>Spectroscopy. Advanced Healthcare Materials, 2018, 7, 1800317.                                                   | 7.6                | 3           |
| 86 | Nanodots: Ultrasmall NaGdF <sub>4</sub> Nanodots for Efficient MR Angiography and<br>Atherosclerotic Plaque Imaging (Adv. Mater. 23/2014). Advanced Materials, 2014, 26, 3980-3980.                          | 21.0               | 1           |
| 87 | Engineering of Hybrid Upconversion Nanoparticles for Biodetection and Cancer Imaging. , 2017, , 192-220.                                                                                                     |                    | 0           |