Mark D Nornberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8036375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic Turbulence and Current Drive during Local Helicity Injection. Physical Review Letters, 2022, 128, 105001.	7.8	0
2	Digital Control and Power Systems for the Pegasus-III Experiment. IEEE Transactions on Plasma Science, 2022, 50, 4021-4026.	1.3	3
3	The New PEGASUS-III Experiment. IEEE Transactions on Plasma Science, 2022, 50, 4009-4014.	1.3	2
4	Microcalorimeter measurement of x-ray spectra from a high-temperature magnetically confined plasma. Review of Scientific Instruments, 2021, 92, 063520.	1.3	2
5	Direct measurements of the 3D plasma velocity in single-helical-axis RFP plasmas. Physics of Plasmas, 2021, 28, 012510.	1.9	0
6	Initial characterization of electron temperature and density profiles in PEGASUS spherical tokamak discharges driven solely by local helicity injection. Physics of Plasmas, 2021, 28, 102504.	1.9	1
7	Terrella for advanced undergraduate laboratory. American Journal of Physics, 2020, 88, 670-675.	0.7	2
8	Impact of resonant magnetic perturbations on zonal flows and microturbulence. Nuclear Fusion, 2020, 60, 096004.	3.5	8
9	Intrinsic flow and tearing mode rotation in the RFP during improved confinement. Physics of Plasmas, 2019, 26, 072503.	1.9	5
10	A spectrometer for high-precision ion temperature and velocity measurements in low-temperature plasmas. Review of Scientific Instruments, 2019, 90, 063502.	1.3	4
11	Direct Measurement of a Toroidally Directed Zonal Flow in a Toroidal Plasma. Physical Review Letters, 2019, 122, 105001.	7.8	15
12	Model Validation for Quantitative X-Ray Measurements. Fusion Science and Technology, 2018, 74, 167-176.	1.1	2
13	Simulation, design, and first test of a multi-energy soft x-ray (SXR) pinhole camera in the Madison Symmetric Torus (MST). Review of Scientific Instruments, 2018, 89, 10G116.	1.3	12
14	Measurements of Impurity Transport Due to Drift-Wave Turbulence in a Toroidal Plasma. Physical Review Letters, 2018, 121, 165002.	7.8	7
15	High ionisation fraction plasmas in a low temperature, multidipole cusp plasma. Journal of Plasma Physics, 2018, 84, .	2.1	1
16	Incorporating Beam Attenuation Calculations into an Integrated Data Analysis Model for Ion Effective Charge. Fusion Science and Technology, 2018, 74, 144-153.	1.1	4
17	Using integrated data analysis to extend measurement capability (invited). Review of Scientific Instruments, 2018, 89, 10K103.	1.3	5
18	Magnetic and velocity fluctuations from nonlinearly coupled tearing modes in the reversed field pinch with and without the reversal surface. Physics of Plasmas, 2017, 24, .	1.9	3

MARK D NORNBERG

#	Article	IF	CITATIONS
19	Linearized spectrum correlation analysis for line emission measurements. Review of Scientific Instruments, 2017, 88, 083513.	1.3	2
20	Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam. Review of Scientific Instruments, 2016, 87, 11E543.	1.3	0
21	Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements. Review of Scientific Instruments, 2016, 87, 11E530.	1.3	5
22	Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma. Physics of Plasmas, 2016, 23, 055702.	1.9	3
23	Effect of resonant magnetic perturbations on three dimensional equilibria in the Madison Symmetric Torus reversed-field pinch. Physics of Plasmas, 2016, 23, 056104.	1.9	10
24	Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system. Review of Scientific Instruments, 2016, 87, 11E509.	1.3	3
25	The Wisconsin Plasma Astrophysics Laboratory. Journal of Plasma Physics, 2015, 81, .	2.1	54
26	Suppression of turbulent resistivity in turbulent Couette flow. Physics of Plasmas, 2015, 22, 072304.	1.9	0
27	Determination of <i>Z</i> _{eff} by integrating measurements from x-ray tomography and charge exchange recombination spectroscopy. Nuclear Fusion, 2015, 55, 123016.	3.5	16
28	Control of 3D equilibria with resonant magnetic perturbations in MST. Plasma Physics and Controlled Fusion, 2015, 57, 104004.	2.1	13
29	Runaway of energetic test ions in a toroidal plasma. Physics of Plasmas, 2015, 22, .	1.9	11
30	Impurity transport studies in the Madison Symmetric Torus reversed-field pinch during standard and pulsed poloidal current drive regimes. Plasma Physics and Controlled Fusion, 2014, 56, 075012.	2.1	10
31	Fast ion confinement in the three-dimensional helical reversed-field pinch. Plasma Physics and Controlled Fusion, 2014, 56, 094006.	2.1	13
32	The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics. Physics of Plasmas, 2014, 21, 013505.	1.9	40
33	Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch. Physics of Plasmas, 2014, 21, 056104.	1.9	12
34	Statistical analysis of variations in impurity ion heating at reconnection events in the Madison Symmetric Torus. Physics of Plasmas, 2014, 21, .	1.9	8
35	Taylor-Couette flow of unmagnetized plasma. Physics of Plasmas, 2014, 21, 042117.	1.9	13
36	Optimization of magnetic amplification by flow constraints in turbulent liquid sodium. Physics of Plasmas, 2014, 21, 055903.	1.9	1

MARK D NORNBERG

#	Article	IF	CITATIONS
37	Bootstrapping under constraint for the assessment of group behavior in human contact networks. Physical Review E, 2013, 88, 052812.	2.1	3
38	Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport. Physics of Plasmas, 2013, 20, 030701.	1.9	17
39	Charge-to-mass-ratio-dependent ion heating during magnetic reconnection in the MST RFP. Physics of Plasmas, 2013, 20, .	1.9	11
40	Dissipation range turbulent cascades in plasmas. Physics of Plasmas, 2012, 19, .	1.9	17
41	Classical confinement and outward convection of impurity ions in the MST RFP. Physics of Plasmas, 2012, 19, .	1.9	12
42	High resolution charge-exchange spectroscopic measurements of aluminum impurity ions in a high temperature plasma. Plasma Physics and Controlled Fusion, 2012, 54, 012002.	2.1	12
43	Fast-Particle-Driven Alfvénic Modes in a Reversed Field Pinch. Physical Review Letters, 2012, 109, 115003.	7.8	16
44	A resource for laboratory safety. Physics Today, 2012, 65, 9-9.	0.3	0
45	Neutral beam heating of a RFP plasma in MST. Physics of Plasmas, 2012, 19, .	1.9	12
46	DIRECT OBSERVATION OF THE TURBULENT emf AND TRANSPORT OF MAGNETIC FIELD IN A LIQUID SODIUM EXPERIMENT. Astrophysical Journal, 2012, 759, 80.	4.5	16
47	Reducing Global Turbulent Resistivity by Eliminating Large Eddies in a Spherical Liquid-Sodium Experiment. Physical Review Letters, 2011, 106, 254502.	7.8	10
48	Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment. Physical Review Letters, 2010, 104, 074501.	7.8	53
49	GalnSn usage in the research laboratory. Review of Scientific Instruments, 2008, 79, 056107.	1.3	224
50	Fluctuation-driven magnetic fields in the Madison Dynamo Experiment. Physics of Plasmas, 2008, 15, .	1.9	3
51	A liquid metal flume for free surface magnetohydrodynamic experiments. Review of Scientific Instruments, 2008, 79, 094501.	1.3	12
52	Turbulent Diamagnetism in Flowing Liquid Sodium. Physical Review Letters, 2007, 98, 164503.	7.8	32
53	Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow. Physical Review E, 2007, 75, 026303.	2.1	48
54	Measurements of the magnetic field induced by a turbulent flow of liquid metal. Physics of Plasmas, 2006, 13, 055901.	1.9	28

#	Article	IF	CITATIONS
55	Intermittent Magnetic Field Excitation by a Turbulent Flow of Liquid Sodium. Physical Review Letters, 2006, 97, 044503.	7.8	39
56	Observation of a Turbulence-Induced Large Scale Magnetic Field. Physical Review Letters, 2006, 96, 055002.	7.8	60
57	On the Possibility of an Homogeneous MHD Dynamo in the Laboratory. , 2001, , 59-66.		5
58	Radio frequency wave experiments on the MST reversed field pinch. , 1999, , .		1