Kiyoshi Nagai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8036027/publications.pdf

Version: 2024-02-01

50 6,599 32 47
papers citations h-index g-index

85 85 85 4952 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Nature Communications, 2021, 12, 1488.	12.8	8
2	Structural basis for conformational equilibrium of the catalytic spliceosome. Molecular Cell, 2021, 81, 1439-1452.e9.	9.7	26
3	RNA Splicing by the Spliceosome. Annual Review of Biochemistry, 2020, 89, 359-388.	11.1	357
4	A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Science, 2019, 363, 710-714.	12.6	87
5	Mechanism of $5\hat{E}^1$ splice site transfer for human spliceosome activation. Science, 2019, 364, 362-367.	12.6	109
6	Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032391.	5 . 5	67
7	Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Annual Review of Biophysics, 2018, 47, 175-199.	10.0	23
8	Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures. Chemical Reviews, 2018, 118, 4156-4176.	47.7	52
9	Recruiting more proteins to the RNA world. Science, 2018, 362, 644-645.	12.6	1
10	Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature, 2018, 559, 419-422.	27.8	113
11	Structure of a spliceosome remodelled for exon ligation. Nature, 2017, 542, 377-380.	27.8	160
12	Structure of a pre-catalytic spliceosome. Nature, 2017, 546, 617-621.	27.8	191
13	Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-binding domain. Rna, 2017, 23, 968-981.	3.5	10
14	Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nature Structural and Molecular Biology, 2017, 24, 791-799.	8.2	156
15	CryoEM structures of spliceosomal complexes reveal the molecular mechanism of pre-mRNA splicing. Current Opinion in Structural Biology, 2017, 46, 130-139.	5 . 7	22
16	Postcatalytic spliceosome structure reveals mechanism of 3′–splice site selection. Science, 2017, 358, 1283-1288.	12.6	99
17	Cryo-EM structure of the spliceosome immediately after branching. Nature, 2016, 537, 197-201.	27.8	208
18	CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Current Opinion in Structural Biology, 2016, 36, 48-57.	5.7	45

#	Article	lF	Citations
19	Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Ã resolution. Nature, 2016, 530, 298-302.	27.8	184
20	¹¹³ Cdâ€NMR Experiments Reveal an Unusual Metal Cluster in the Solution Structure of the Yeast Splicing Protein Bud31p. Angewandte Chemie, 2015, 127, 4943-4946.	2.0	2
21	In the beginning was the U1A protein: a personal reflection. Rna, 2015, 21, 699-700.	3.5	1
22	The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature, 2015, 523, 47-52.	27.8	195
23	Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. Nucleic Acids Research, 2015, 43, 10963-10974.	14.5	35
24	Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of $5\hat{a}\in^2$ splice site recognition. ELife, 2015, 4, .	6.0	202
25	Investigation of how the Saccharomyces cerevisiae Lsm2â€8 proteins bind to the 3´ end of U6 snRNA. FASEB Journal, 2015, 29, 711.6.	0.5	0
26	Structural studies of the spliceosome: zooming into the heart of the machine. Current Opinion in Structural Biology, 2014, 25, 57-66.	5.7	51
27	Structural Basis of Brr2-Prp8 Interactions and Implications for U5 snRNP Biogenesis and the Spliceosome Active Site. Structure, 2013, 21, 910-919.	3.3	80
28	Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature, 2013, 493, 638-643.	27.8	203
29	Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature, 2011, 473, 536-539.	27.8	119
30	Crystal structure of human spliceosomal U1 snRNP at 5.5 à resolution. Nature, 2009, 458, 475-480.	27.8	313
31	3SA4-02 Structure and function of Root effect fish hemoglobins(3SA4 Hemoglobin revisited,The 47th) Tj ETQq1	1 0.78431 0.1	.4 rgBT /Ove
32	Solution structure of the U2 snRNP protein Rds3p reveals a knotted zinc-finger motif. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9621-9626.	7.1	30
33	NEW EMBO MEMBER'S REVIEW: Structure, function and evolution of the signal recognition particle. EMBO Journal, 2003, 22, 3479-3485.	7.8	135
34	Reply to "Complex conformations and crystal contacts". Nature Structural and Molecular Biology, 2003, 10, 494-495.	8.2	2
35	Crystal structure of the spliceosomal U2B″–U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature, 1998, 394, 645-650.	27.8	341
36	RNA RECOGNITION BY RNP PROTEINS DURING RNA PROCESSING. Annual Review of Biophysics and Biomolecular Structure, 1998, 27, 407-445.	18.3	286

3

#	Article	IF	CITATIONS
37	Transplanting a unique allosteric effect from crocodile into human haemoglobin. Nature, 1995, 373, 244-246.	27.8	87
38	Recruiting proteins to the RNA world. Nature Structural Biology, 1995, 2, 518-522.	9.7	26
39	Crystal structure at 1.92 Ã resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature, 1994, 372, 432-438.	27.8	879
40	Protein engineering in haemoglobin. Nature, 1992, 355, 777-778.	27.8	0
41	Was the loss of the D helix in \hat{l}_{\pm} globin a functionally neutral mutation?. Nature, 1991, 352, 349-351.	27.8	50
42	Cryptic initiation sequence revealed. Nature, 1990, 343, 418-418.	27.8	16
43	Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature, 1990, 348, 515-520.	27.8	682
44	Evolution of haemoglobin studied by protein engineering. BioEssays, 1988, 8, 79-82.	2.5	4
45	Zinc-finger motifs expressed in E. coli and folded in vitro direct specific binding to DNA. Nature, 1988, 332, 284-286.	27.8	103
46	The role of the distal histidine in myoglobin and haemoglobin. Nature, 1988, 336, 265-266.	27.8	264
47	Crystallographic analysis of mutant human haemoglobins made in Escherichia coli. Nature, 1986, 320, 555-556.	27.8	39
48	Sexist ads. Nature, 1986, 321, 106-106.	27.8	1
49	Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins. Nature, 1986, 322, 80-83.	27.8	111
50	Generation of Î ² -globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. Nature, 1984, 309, 810-812.	27.8	418