Song Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803592/publications.pdf Version: 2024-02-01

304743 330143 2,284 34 22 37 citations h-index g-index papers 37 37 37 2281 docs citations times ranked citing authors all docs

SONG SONG

#	Article	IF	CITATIONS
1	Electrophilic amidomethylation of arenes with DMSO/MeCN reagents. Organic Chemistry Frontiers, 2022, 9, 2430-2437.	4.5	6
2	Catalytic Electrophilic Halogenation of Arenes with Electron-Withdrawing Substituents. Journal of the American Chemical Society, 2022, 144, 13415-13425.	13.7	40
3	Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nature Communications, 2021, 12, 3873.	12.8	41
4	Selective Carbon arbon Bond Amination with Redoxâ€Active Aminating Reagents: A Direct Approach to Anilines â€. Chinese Journal of Chemistry, 2021, 39, 3011.	4.9	8
5	Cu(I)-Catalyzed [2 + 2 + 1] Cycloaddition of Amines, Alkynes, and Ketenes: An Umpolung and Regioselective Approach to Full-Substituted β-Pyrrolinones. Organic Letters, 2021, 23, 762-766.	4.6	13
6	DMSO-catalysed late-stage chlorination of (hetero)arenes. Nature Catalysis, 2020, 3, 107-115.	34.4	122
7	Nitromethane as a nitrogen donor in Schmidt-type formation of amides and nitriles. Science, 2020, 367, 281-285.	12.6	81
8	Carboxyl Group-Directed Iridium-Catalyzed Enantioselective Hydrogenation of Aliphatic Î ³ -Ketoacids. ACS Catalysis, 2020, 10, 10032-10039.	11.2	22
9	Intramolecular Csp ³ –H/C–C bond amination of alkyl azides for the selective synthesis of cyclic imines and tertiary amines. Chemical Science, 2020, 11, 4482-4487.	7.4	14
10	Nitromethane-Enabled Fluorination of Styrenes and Arenes. CCS Chemistry, 2020, 2, 566-575.	7.8	17
11	A metal-free desulfurizing radical reductive C–C coupling of thiols and alkenes. Chemical Communications, 2019, 55, 10583-10586.	4.1	25
12	Efficient and practical synthesis of unsymmetrical disulfides <i>via</i> base-catalyzed aerobic oxidative dehydrogenative coupling of thiols. Organic Chemistry Frontiers, 2019, 6, 2220-2225.	4.5	66
13	Oxidative β-Halogenation of Alcohols: A Concise and Diastereoselective Approach to Halohydrins. Synlett, 2019, 30, 437-441.	1.8	5
14	Electrochemically Oxidative C–C Bond Cleavage of Alkylarenes for Anilines Synthesis. ACS Catalysis, 2019, 9, 2063-2067.	11.2	69
15	From alkylarenes to anilines via site-directed carbon–carbon amination. Nature Chemistry, 2019, 11, 71-77.	13.6	102
16	Acetonitrile Activation: An Effective Two arbon Unit for Cyclization. Angewandte Chemie - International Edition, 2019, 58, 4376-4380.	13.8	21
17	Cs ₂ CO ₃ atalyzed Aerobic Oxidative Crossâ€Dehydrogenative Coupling of Thiols with Phosphonates and Arenes. Angewandte Chemie - International Edition, 2017, 56, 2487-2491.	13.8	145
18	Cs ₂ CO ₃ atalyzed Aerobic Oxidative Crossâ€Dehydrogenative Coupling of Thiols with Phosphonates and Arenes. Angewandte Chemie, 2017, 129, 2527-2531.	2.0	32

Song Song

#	Article	IF	CITATIONS
19	Oxygenation of Simple Olefins through Selective Allylic Câ^'C Bond Cleavage: A Direct Approach to Cinnamyl Aldehydes. Angewandte Chemie, 2017, 129, 12102-12106.	2.0	2
20	Oxygenation of Simple Olefins through Selective Allylic Câ^'C Bond Cleavage: A Direct Approach to Cinnamyl Aldehydes. Angewandte Chemie - International Edition, 2017, 56, 11940-11944.	13.8	22
21	Conversion of Simple Cyclohexanones into Catechols. Journal of the American Chemical Society, 2016, 138, 12271-12277.	13.7	141
22	Efficient and Practical Oxidative Bromination and Iodination of Arenes and Heteroarenes with DMSO and Hydrogen Halide: A Mild Protocol for Late-Stage Functionalization. Organic Letters, 2015, 17, 2886-2889.	4.6	206
23	From simple organobromides or olefins to highly value-added bromohydrins: a versatile performance of dimethyl sulfoxide. Green Chemistry, 2015, 17, 2727-2731.	9.0	80
24	Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols. Journal of the American Chemical Society, 2015, 137, 6059-6066.	13.7	269
25	Synthesis of Chiral <i>α</i> â€Benzylâ€ <i>β</i> ² â€hydroxy Carboxylic Acids through Iridiumâ€Catalyzed Asymmetric Hydrogenation of <i>α</i> â€Oxymethylcinnamic Acids. Chinese Journal of Chemistry, 2014, 32, 783-787.	4.9	15
26	Supramolecular hydrogel based on amphiphilic calix[4]arene and its application in the synthesis of silica nanotubes. RSC Advances, 2014, 4, 24909-24913.	3.6	16
27	Microtubes and hollow microspheres formed by winding of nanoribbons from self-assembly of tetraphenylethylene amide macrocycles. Chemical Communications, 2014, 50, 15212-15215.	4.1	26
28	Monomer Emission and Aggregate Emission of TPE Derivatives in the Presence of Î ³ -Cyclodextrin. Organic Letters, 2014, 16, 2170-2173.	4.6	77
29	lridium-Catalyzed Enantioselective Hydrogenation of $\hat{1}\pm,\hat{1}^2$ -Unsaturated Carboxylic Acids with Tetrasubstituted Olefins. Organic Letters, 2013, 15, 3722-3725.	4.6	45
30	Carboxyâ€Directed Asymmetric Hydrogenation of 1,1â€Diarylethenes and 1,1â€Dialkylethenes. Angewandte Chemie - International Edition, 2013, 52, 1556-1559.	13.8	102
31	Iridiumâ€Catalyzed Enantioselective Hydrogenation of Unsaturated Heterocyclic Acids. Angewandte Chemie - International Edition, 2013, 52, 6072-6075.	13.8	69
32	Enantioselective Iridiumâ€Catalyzed Hydrogenation of β,γâ€Unsaturated Carboxylic Acids: An Efficient Approach to Chiral 4â€Alkylâ€4â€aryl Butanoic Acids. Angewandte Chemie - International Edition, 2012, 51, 2708-2711.	13.8	62
33	Enantioselective Hydrogenation of α-Aryloxy and α-Alkoxy α,β-Unsaturated Carboxylic Acids Catalyzed by Chiral Spiro Iridium/Phosphino-Oxazoline Complexes. Journal of the American Chemical Society, 2010, 132, 1172-1179.	13.7	105
34	Iridium-Catalyzed Enantioselective Hydrogenation of α,β-Unsaturated Carboxylic Acids. Journal of the American Chemical Society, 2008, 130, 8584-8585.	13.7	156