
Aamir Ahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8035516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acquisition of Epithelial-Mesenchymal Transition Phenotype of Gemcitabine-Resistant Pancreatic Cancer Cells Is Linked with Activation of the Notch Signaling Pathway. Cancer Research, 2009, 69, 2400-2407.	0.4	576
2	Gemcitabine Sensitivity Can Be Induced in Pancreatic Cancer Cells through Modulation of miR-200 and miR-21 Expression by Curcumin or Its Analogue CDF. Cancer Research, 2010, 70, 3606-3617.	0.4	413
3	Evolving role of uPA/uPAR system in human cancers. Cancer Treatment Reviews, 2008, 34, 122-136.	3.4	371
4	Epithelial to Mesenchymal Transition Is Mechanistically Linked with Stem Cell Signatures in Prostate Cancer Cells. PLoS ONE, 2010, 5, e12445.	1.1	354
5	Metformin Inhibits Cell Proliferation, Migration and Invasion by Attenuating CSC Function Mediated by Deregulating miRNAs in Pancreatic Cancer Cells. Cancer Prevention Research, 2012, 5, 355-364.	0.7	317
6	Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resistance Updates, 2010, 13, 109-118.	6.5	313
7	Pancreatic cancer: understanding and overcoming chemoresistance. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 27-33.	8.2	303
8	miR-200 Regulates PDGF-D-Mediated Epithelial–Mesenchymal Transition, Adhesion, and Invasion of Prostate Cancer Cells. Stem Cells, 2009, 27, 1712-1721.	1.4	292
9	Curcumin Analogue CDF Inhibits Pancreatic Tumor Growth by Switching on Suppressor microRNAs and Attenuating EZH2 Expression. Cancer Research, 2012, 72, 335-345.	0.4	285
10	Perspectives on medicinal properties of plumbagin and its analogs. Medicinal Research Reviews, 2012, 32, 1131-1158.	5.0	251
11	Putative Mechanism for Anticancer and Apoptosis-Inducing Properties of Plant-Derived Polyphenolic Compounds. IUBMB Life, 2000, 50, 167-171.	1.5	219
12	Overview of Cancer Stem Cells (CSCs) and Mechanisms of Their Regulation: Implications for Cancer Therapy. Current Protocols in Pharmacology, 2013, 61, Unit 14.25.	4.0	210
13	Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chemico-Biological Interactions, 2000, 125, 177-189.	1.7	206
14	Overâ€expression of FoxM1 leads to epithelial–mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. Journal of Cellular Biochemistry, 2011, 112, 2296-2306.	1.2	199
15	Breast Cancer Statistics: Recent Trends. Advances in Experimental Medicine and Biology, 2019, 1152, 1-7.	0.8	184
16	Phosphoglucose Isomerase/Autocrine Motility Factor Mediates Epithelial-Mesenchymal Transition Regulated by miR-200 in Breast Cancer Cells. Cancer Research, 2011, 71, 3400-3409.	0.4	179
17	Downâ€regulation of Notchâ€1 and Jaggedâ€1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NFâ€Î°B signaling pathways. Journal of Cellular Biochemistry, 2010, 109, 726-736.	1.2	174
18	Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. Journal of Hematology and Oncology, 2009, 2, 38.	6.9	167

#	Article	IF	CITATIONS
19	Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 258-267.	3.3	163
20	Targeted Regulation of PI3K/Akt/mTOR/NF-κB Signaling by Indole Compounds and their Derivatives: Mechanistic Details and Biological Implications for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 1002-1013.	0.9	162
21	The Role of MicroRNAs in Breast Cancer Migration, Invasion and Metastasis. International Journal of Molecular Sciences, 2012, 13, 13414-13437.	1.8	161
22	Hypoxia-Induced Aggressiveness of Pancreatic Cancer Cells Is Due to Increased Expression of VEGF, IL-6 and miR-21, Which Can Be Attenuated by CDF Treatment. PLoS ONE, 2012, 7, e50165.	1.1	152
23	Garcinol Regulates EMT and Wnt Signaling Pathways <i>In Vitro</i> and <i>In Vivo</i> , Leading to Anticancer Activity against Breast Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 2193-2201.	1.9	144
24	Plumbaginâ€induced apoptosis of human breast cancer cells is mediated by inactivation of NFâ€îºB and Bclâ€2. Journal of Cellular Biochemistry, 2008, 105, 1461-1471.	1.2	141
25	Forkhead box M1 transcription factor: A novel target for cancer therapy. Cancer Treatment Reviews, 2010, 36, 151-156.	3.4	139
26	Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Current Pharmaceutical Design, 2013, 19, 2047-69.	0.9	129
27	Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Letters, 2010, 292, 141-148.	3.2	128
28	Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. Journal of Hematology and Oncology, 2013, 6, 77.	6.9	127
29	A Prooxidant Mechanism for the Anticancer and Chemopreventive Properties of Plant Polyphenols. Current Drug Targets, 2012, 13, 1738-1749.	1.0	123
30	Genistein Inhibits Cell Growth and Induces Apoptosis Through Up-regulation of miR-34a in Pancreatic Cancer Cells. Current Drug Targets, 2012, 13, 1750-1756.	1.0	123
31	DNA breakage by resveratrol and Cu(II): reaction mechanism and bacteriophage inactivation. Cancer Letters, 2000, 154, 29-37.	3.2	119
32	Up-Regulation of Sonic Hedgehog Contributes to TGF-β1-Induced Epithelial to Mesenchymal Transition in NSCLC Cells. PLoS ONE, 2011, 6, e16068.	1.1	119
33	Hypoxia Induced Aggressiveness of Prostate Cancer Cells Is Linked with Deregulated Expression of VEGF, IL-6 and miRNAs That Are Attenuated by CDF. PLoS ONE, 2012, 7, e43726.	1.1	116
34	The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 272-296.	3.3	116
35	Anticancer Properties of Indole Compounds: Mechanism of Apoptosis Induction and Role in Chemotherapy. Current Drug Targets, 2010, 11, 652-666.	1.0	115
36	Inclusion Complex of Novel Curcumin Analogue CDF and β-Cyclodextrin (1:2) and Its Enhanced In Vivo Anticancer Activity Against Pancreatic Cancer. Pharmaceutical Research, 2012, 29, 1775-1786.	1.7	115

#	Article	IF	CITATIONS
37	Pancreatic cancer stem cells: Emerging target for designing novel therapy. Cancer Letters, 2013, 338, 94-100.	3.2	115
38	Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics, 2012, 7, 940-949.	1.3	107
39	From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. Cancer Therapy, 2008, 6, 495-510.	2.9	107
40	Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 122-130.	3.3	99
41	The Role of Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancer. Advances in Experimental Medicine and Biology, 2016, 890, 57-74.	0.8	91
42	Cancer Chemoprevention by Phytochemicals: Nature's Healing Touch. Molecules, 2017, 22, 395.	1.7	90
43	Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemopreventive action. Molecular Nutrition and Food Research, 2014, 58, 437-446.	1.5	89
44	Histone Deacetylase Inhibitors Induce Epithelial-to-Mesenchymal Transition in Prostate Cancer Cells. PLoS ONE, 2012, 7, e45045.	1.1	89
45	Prooxidant activity of resveratrol in the presence of copper ions: Mutagenicity in plasmid DNA. Toxicology Letters, 2005, 159, 1-12.	0.4	87
46	Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Molecular Nutrition and Food Research, 2011, 55, 553-559.	1.5	87
47	Inhibitory effect of curcumin on oral carcinoma CALâ€27 cells via suppression of Notchâ€1 and NFâ€₽́B signaling pathways. Journal of Cellular Biochemistry, 2011, 112, 1055-1065.	1.2	87
48	Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants. Cell Death and Disease, 2013, 4, e660-e660.	2.7	85
49	Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3104-3108.	1.0	84
50	Perspectives on Medicinal Properties of Mangiferin. Mini-Reviews in Medicinal Chemistry, 2012, 12, 412-425.	1.1	83
51	MicroRNAs in gynecological cancers: Small molecules with big implications. Cancer Letters, 2017, 407, 123-138.	3.2	83
52	Apoptosis-inducing effect of erlotinib is potentiated by 3,3′-diindolylmethane <i>in vitro</i> and <i>in vivo</i> using an orthotopic model of pancreatic cancer. Molecular Cancer Therapeutics, 2008, 7, 1708-1719.	1.9	82
53	Apoptosisâ€inducing effect of garcinol is mediated by NFâ€̂PB signaling in breast cancer cells. Journal of Cellular Biochemistry, 2010, 109, 1134-1141.	1.2	82
54	Downâ€regulation of Notchâ€1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. Journal of Cellular Biochemistry, 2011, 112, 78-88.	1.2	81

#	Article	IF	CITATIONS
55	Perspectives on New Synthetic Curcumin Analogs and their Potential Anticancer Properties. Current Pharmaceutical Design, 2013, 19, 2047-2069.	0.9	81
56	Pathways to Breast Cancer Recurrence. ISRN Oncology, 2013, 2013, 1-16.	2.1	80
57	TW-37, a Small-Molecule Inhibitor of Bcl-2, Inhibits Cell Growth and Induces Apoptosis in Pancreatic Cancer: Involvement of Notch-1 Signaling Pathway. Cancer Research, 2009, 69, 2757-2765.	0.4	78
58	From Body Art to Anticancer Activities: Perspectives on Medicinal Properties of Henna. Current Drug Targets, 2012, 13, 1777-1798.	1.0	76
59	Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen Species. Toxins, 2016, 8, 37.	1.5	73
60	Aging and Inflammation: Etiological Culprits of Cancer. Current Aging Science, 2009, 2, 174-186.	0.4	72
61	Resveratrol Mobilizes Endogenous Copper in Human Peripheral Lymphocytes Leading to Oxidative DNA Breakage: A Putative Mechanism for Chemoprevention of Cancer. Pharmaceutical Research, 2010, 27, 979-988.	1.7	70
62	Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opinion on Therapeutic Targets, 2012, 16, 49-66.	1.5	70
63	Anticancer action of garcinol in vitro and in vivo is in part mediated through inhibition of STAT-3 signaling. Carcinogenesis, 2012, 33, 2450-2456.	1.3	67
64	Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer, 2015, 15, 540.	1.1	67
65	Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Delivery and Translational Research, 2013, 3, 165-182.	3.0	66
66	Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Research, 2011, 31, 1105-13.	0.5	66
67	3,3′-Diindolylmethane Enhances Taxotere-Induced Apoptosis in Hormone-Refractory Prostate Cancer Cells through Survivin Down-regulation. Cancer Research, 2009, 69, 4468-4475.	0.4	65
68	Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neuroscience and Biobehavioral Reviews, 2019, 102, 95-105.	2.9	64
69	Fluorinated 2′-hydroxychalcones as garcinol analogs with enhanced antioxidant and anticancer activities. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5818-5821.	1.0	63
70	Recent updates on the role of microRNAs in prostate cancer. Journal of Hematology and Oncology, 2012, 5, 9.	6.9	63
71	The complexities of obesity and diabetes with the development and progression of pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1815, 135-146.	3.3	62
72	Coinage Metal Complexes Against Breast Cancer. Current Medicinal Chemistry, 2012, 19, 3949-3956.	1.2	57

#	Article	IF	CITATIONS
73	Curcumin-Mediated Apoptotic Cell Death in Papillary Thyroid Cancer and Cancer Stem-Like Cells through Targeting of the JAK/STAT3 Signaling Pathway. International Journal of Molecular Sciences, 2020, 21, 438.	1.8	57
74	Chemoprevention of Pancreatic Cancer: Characterization of Par-4 and its Modulation by $3,3\hat{\epsilon}^2$ Diindolylmethane (DIM). Pharmaceutical Research, 2008, 25, 2117-2124.	1.7	56
75	Prooxidant and antioxidant activities of bilirubin and its metabolic precursor biliverdin: a structure–activity study. Chemico-Biological Interactions, 2001, 137, 59-74.	1.7	55
76	Downâ€regulation of uPA and uPAR by 3,3′â€diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. Journal of Cellular Biochemistry, 2009, 108, 916-925.	1.2	54
77	FoxM1 is a Novel Target of a Natural Agent in Pancreatic Cancer. Pharmaceutical Research, 2010, 27, 1159-1168.	1.7	54
78	Expression of microRNAs: potential molecular link between obesity, diabetes and cancer. Obesity Reviews, 2011, 12, 1050-1062.	3.1	54
79	Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. International Journal of Biological Macromolecules, 2018, 106, 569-578.	3.6	54
80	Pancreatic Cancer Stem-like Cells Display Aggressive Behavior Mediated via Activation of FoxQ1. Journal of Biological Chemistry, 2014, 289, 14520-14533.	1.6	53
81	MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers. International Journal of Molecular Sciences, 2017, 18, 2089.	1.8	53
82	Circular RNAs as biomarkers and therapeutic targets in cancer. Seminars in Cancer Biology, 2022, 83, 242-252.	4.3	53
83	Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Seminars in Cancer Biology, 2022, 83, 384-398.	4.3	53
84	Hydroxytyrosol Induces Apoptosis and Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells. Nutrition and Cancer, 2017, 69, 932-942.	0.9	52
85	Inactivation of uPA and its receptor uPAR by 3,3′â€diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. Journal of Cellular Biochemistry, 2009, 107, 516-527.	1.2	51
86	Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism. BioMetals, 2011, 24, 1169-1178.	1.8	51
87	Erlotinib Resistance in Lung Cancer: Current Progress and Future Perspectives. Frontiers in Pharmacology, 2013, 4, 15.	1.6	50
88	CAR-T Cell Therapies: An Overview of Clinical Studies Supporting Their Approved Use against Acute Lymphoblastic Leukemia and Large B-Cell Lymphomas. International Journal of Molecular Sciences, 2020, 21, 3906.	1.8	50
89	Targeting CSCs in Tumor Microenvironment: The Potential Role of ROS-Associated miRNAs in Tumor Aggressiveness. Current Stem Cell Research and Therapy, 2013, 9, 22-35.	0.6	50
90	Oxidative DNA damage by capsaicin and dihydrocapsaicin in the presence of Cu(II). Cancer Letters, 2001, 169, 139-146.	3.2	49

#	Article	IF	CITATIONS
91	Induction of Cancer Cell Death by Isoflavone: The Role of Multiple Signaling Pathways. Nutrients, 2011, 3, 877-896.	1.7	47
92	Emerging evidence for the role of differential tumor microenvironment in breast cancer racial disparity: a closer look at the surroundings. Carcinogenesis, 2017, 38, 757-765.	1.3	47
93	Arsenic Trioxide Inhibits Cell Growth and Induces Apoptosis through Inactivation of Notch Signaling Pathway in Breast Cancer. International Journal of Molecular Sciences, 2012, 13, 9627-9641.	1.8	46
94	Antioxidant Function of Isoflavone and 3,3′-Diindolylmethane: Are They Important for Cancer Prevention and Therapy?. Antioxidants and Redox Signaling, 2013, 19, 139-150.	2.5	46
95	Targeting CSC-Related miRNAs for Cancer Therapy by Natural Agents. Current Drug Targets, 2012, 13, 1858-1868.	1.0	45
96	Epigenetic basis of cancer health disparities: Looking beyond genetic differences. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 16-28.	3.3	45
97	Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers. International Journal of Molecular Sciences, 2018, 19, 652.	1.8	45
98	Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells. Mutagenesis, 2009, 24, 413-418.	1.0	44
99	3,3′â€diindolylmethane enhances taxotereâ€induced growth inhibition of breast cancer cells through downregulation of FoxM1. International Journal of Cancer, 2011, 129, 1781-1791.	2.3	44
100	Inactivation of AR/TMPRSS2-ERG/Wnt Signaling Networks Attenuates the Aggressive Behavior of Prostate Cancer Cells. Cancer Prevention Research, 2011, 4, 1495-1506.	0.7	43
101	Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study. International Journal of Molecular Sciences, 2015, 16, 26754-26769.	1.8	43
102	Activated K-ras and INK4a/Arf Deficiency Cooperate During the Development of Pancreatic Cancer by Activation of Notch and NF-I®B Signaling Pathways. PLoS ONE, 2011, 6, e20537.	1.1	43
103	Perspectives on the Role of Isoflavones in Prostate Cancer. AAPS Journal, 2013, 15, 991-1000.	2.2	42
104	miR-20b is up-regulated in brain metastases from primary breast cancers. Oncotarget, 2015, 6, 12188-12195.	0.8	42
105	Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Letters, 2014, 351, 134-142.	3.2	41
106	Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs. Seminars in Cancer Biology, 2022, 85, 155-163.	4.3	41
107	Synthesis, characterization and anti-tumor activity of moxifloxacin–Copper complexes against breast cancer cell lines. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1802-1806.	1.0	40
108	Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opinion on Therapeutic Targets, 2012, 16, 1041-1054.	1.5	40

#	Article	IF	CITATIONS
109	Targeting Bone Remodeling by Isoflavone and 3,3′-Diindolylmethane in the Context of Prostate Cancer Bone Metastasis. PLoS ONE, 2012, 7, e33011.	1.1	40
110	3, 3′-diindolylmethane Enhances the Effectiveness of Herceptin against HER-2/Neu-Expressing Breast Cancer Cells. PLoS ONE, 2013, 8, e54657.	1.1	40
111	Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds. Cancers, 2011, 3, 2955-2974.	1.7	39
112	Improved anticancer and antiparasitic activity of new lawsone Mannich bases. European Journal of Medicinal Chemistry, 2017, 126, 421-431.	2.6	39
113	Deregulation of PI3K/Akt/mTOR Signaling Pathways by Isoflavones and its Implication in Cancer Treatment. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 1014-1024.	0.9	38
114	Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. American Journal of Translational Research (discontinued), 2014, 6, 384-90.	0.0	38
115	Epigenetic regulation of mi <scp>RNA</scp> ancer stem cells nexus by nutraceuticals. Molecular Nutrition and Food Research, 2014, 58, 79-86.	1.5	36
116	EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/I²-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers, 2020, 12, 951.	1.7	36
117	Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs. International Journal of Molecular Sciences, 2019, 20, 800.	1.8	34
118	Parathyroid Hormone Regulation of Na+,K+-ATPase Requires the PDZ 1 Domain of Sodium Hydrogen Exchanger Regulatory Factor-1 in Opossum Kidney Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 2598-2607.	3.0	33
119	The Prooxidant Action of Dietary Antioxidants Leading to Cellular DNA Breakage and Anticancer Effects: Implications for Chemotherapeutic Action Against Cancer. Cell Biochemistry and Biophysics, 2013, 67, 431-438.	0.9	33
120	Molecular Targets of Naturopathy in Cancer Research: Bridge to Modern Medicine. Nutrients, 2015, 7, 321-334.	1.7	33
121	Non-coding RNAs: A tale of junk turning into treasure. Non-coding RNA Research, 2016, 1, 1-2.	2.4	33
122	Glucose Metabolism Reprogrammed by Overexpression of IKKϵ Promotes Pancreatic Tumor Growth. Cancer Research, 2016, 76, 7254-7264.	0.4	33
123	The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer and Metastasis Reviews, 2021, 40, 691-720.	2.7	33
124	Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis, 2018, 39, 307-317.	1.3	32
125	ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1. Molecular Cancer Research, 2018, 16, 187-196.	1.5	32
126	Cancer Selective Metallocenedicarboxylates of the Fungal Cytotoxin Illudin M. Journal of Medicinal Chemistry, 2011, 54, 6177-6182.	2.9	31

#	Article	IF	CITATIONS
127	Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Frontiers in Bioscience - Elite, 2012, E4, 410.	0.9	31
128	Differentially Expressed miRNAs in Cancer-Stem-Like Cells: Markers for Tumor Cell Aggressiveness of Pancreatic Cancer. Stem Cells and Development, 2014, 23, 1947-1958.	1.1	31
129	Cancer chemopreventive pharmacology of phytochemicals derived from plants of dietary and non-dietary origin: implication for alternative and complementary approaches. Phytochemistry Reviews, 2014, 13, 811-833.	3.1	31
130	Ascorbic Acid in Cancer Chemoprevention: Translational Perspectives and Efficacy. Current Drug Targets, 2012, 13, 1757-1771.	1.0	30
131	Racial health disparities in ovarian cancer: not just black and white. Journal of Ovarian Research, 2017, 10, 58.	1.3	30
132	The therapeutic potential of targeting the epithelial–mesenchymal transition in cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 731-745.	1.5	29
133	Honokiol suppresses pancreatic tumor growth, metastasis and desmoplasia by interfering with tumor–stromal cross-talk. Carcinogenesis, 2016, 37, 1052-1061.	1.3	28
134	Differential Methylation and Acetylation as the Epigenetic Basis of Resveratrol's Anticancer Activity. Medicines (Basel, Switzerland), 2019, 6, 24.	0.7	28
135	Long non-coding RNAs in oncourology. Non-coding RNA Research, 2021, 6, 139-145.	2.4	28
136	Bilirubin-Cu(II) complex degrades DNA. Biochimica Et Biophysica Acta - General Subjects, 1999, 1428, 201-208.	1.1	27
137	Targeting increased copper levels in diethylnitrosamine induced hepatocellular carcinoma cells in rats by epigallocatechin-3-gallate. Tumor Biology, 2015, 36, 8861-8867.	0.8	27
138	Exosomal miR-2276-5p in Plasma Is a Potential Diagnostic and Prognostic Biomarker in Glioma. Frontiers in Cell and Developmental Biology, 2021, 9, 671202.	1.8	27
139	Differential non-coding RNAs expression profiles of invasive and non-invasive pituitary adenomas. Non-coding RNA Research, 2021, 6, 115-122.	2.4	27
140	Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- KappaB signaling. Frontiers in Bioscience - Elite, 2011, E3, 1483-1492.	0.9	27
141	Recent progress on nutraceutical research in prostate cancer. Cancer and Metastasis Reviews, 2014, 33, 629-640.	2.7	25
142	The Role of MicroRNAs in Therapeutic Resistance of Malignant Primary Brain Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 740303.	1.8	25
143	Strand scission in DNA induced by 5-hydroxytryptamine (Serotonin) in the presence of copper ions. Neuroscience Letters, 2001, 308, 83-86.	1.0	24
144	Novel regulatory function for NHERF-1 in Npt2a transcription. American Journal of Physiology - Renal Physiology, 2008, 294, F840-F849.	1.3	24

#	Article	IF	CITATIONS
145	Anticancer properties of a new non-oxido vanadium(IV) complex with a catechol-modified 3,3′-diindolylmethane ligand. Journal of Inorganic Biochemistry, 2019, 194, 1-6.	1.5	24
146	Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin. PLoS ONE, 2015, 10, e0139027.	1.1	24
147	The immunological contribution of NF-κB within the tumor microenvironment: A potential protective role of zinc as an anti-tumor agent. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 160-172.	3.3	23
148	Mobilization of Nuclear Copper by Green Tea Polyphenol Epicatechin-3-Gallate and Subsequent Prooxidant Breakage of Cellular DNA: Implications for Cancer Chemotherapy. International Journal of Molecular Sciences, 2017, 18, 34.	1.8	23
149	Bilirubin/biliverdin–Cu(II) induced DNA breakage; reaction mechanism and biological significance. Toxicology Letters, 2002, 131, 181-189.	0.4	22
150	New ferrocene modified lawsone Mannich bases with anti-proliferative activity against tumor cells. Journal of Saudi Chemical Society, 2017, 21, 105-110.	2.4	22
151	A novel Ru(II) complex derived from hydroxydiamine as a potential antitumor agent: Synthesis and Structural Characterization. Inorganic Chemistry Communication, 2012, 20, 252-258.	1.8	21
152	Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer. Scientific Reports, 2016, 6, 28446.	1.6	21
153	Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Seminars in Cancer Biology, 2022, 86, 382-399.	4.3	21
154	Tumor Cell Growth Inhibition Is Correlated With Levels of Capsaicin Present in Hot Peppers. Nutrition and Cancer, 2011, 63, 272-281.	0.9	20
155	Cutaneous lewisite exposure causes acute lung injury. Annals of the New York Academy of Sciences, 2020, 1479, 210-222.	1.8	20
156	Current Updates on Trastuzumab Resistance in HER2 Overexpressing Breast Cancers. Advances in Experimental Medicine and Biology, 2019, 1152, 217-228.	0.8	20
157	Non-coding RNAs as Mediators of Tamoxifen Resistance in Breast Cancers. Advances in Experimental Medicine and Biology, 2019, 1152, 229-241.	0.8	20
158	Anticancer phytochemical analogs 37: Synthesis, characterization, molecular docking and cytotoxicity of novel plumbagin hydrazones against breast cancer cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2900-2904.	1.0	19
159	The bounty of nature for changing the cancer landscape. Molecular Nutrition and Food Research, 2016, 60, 1251-1263.	1.5	19
160	Targeting triple negative breast cancer cells by N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their metal complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 114, 114-119.	2.0	18
161	Pharmacological Intervention through Dietary Nutraceuticals in Gastrointestinal Neoplasia. Critical Reviews in Food Science and Nutrition, 2016, 56, 1501-1518.	5.4	18
162	Exosomes: Emerging Diagnostic and Therapeutic Targets in Cutaneous Diseases. International Journal of Molecular Sciences, 2020, 21, 9264.	1.8	18

#	Article	IF	CITATIONS
163	Epigenetic regulation of immunosuppressive tumor-associated macrophages through dysregulated microRNAs. Seminars in Cell and Developmental Biology, 2022, 124, 26-33.	2.3	18
164	Biological basis of cancer health disparities: resources and challenges for research. American Journal of Cancer Research, 2017, 7, 1-12.	1.4	18
165	Apogossypolone, derivative of gossypol, mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage. European Journal of Pharmaceutical Sciences, 2012, 47, 280-286.	1.9	17
166	Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism. International Journal of Molecular Sciences, 2016, 17, 973.	1.8	17
167	Epigenetics in Personalized Management of Lung Cancer. Advances in Experimental Medicine and Biology, 2016, 890, 111-122.	0.8	17
168	Sanguinarine Induces Apoptosis in Papillary Thyroid Cancer Cells via Generation of Reactive Oxygen Species. Molecules, 2020, 25, 1229.	1.7	17
169	Anticancer Active Heterocyclic Chalcones: Recent Developments. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 558-566.	0.9	17
170	Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1. Journal of Translational Medicine, 2015, 13, 227.	1.8	16
171	Ferroceneâ€substituted 3,3′â€diindolylmethanes with improved anticancer activity. Applied Organometallic Chemistry, 2016, 30, 441-445.	1.7	16
172	MicroRNAs in Breast Cancer Therapy. Current Pharmaceutical Design, 2014, 20, 5268-5274.	0.9	16
173	Molecular docking and inhibition of matrix metalloproteinase-2 by novel difluorinatedbenzylidene curcumin analog. American Journal of Translational Research (discontinued), 2015, 7, 298-308.	0.0	16
174	Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis. Cancer and Metastasis Reviews, 2022, 41, 281-299.	2.7	16
175	Epigenetic regulation of CXCR4 signaling in cancer pathogenesis and progression. Seminars in Cancer Biology, 2022, 86, 697-708.	4.3	15
176	CAR-T Cell Therapy. International Journal of Molecular Sciences, 2020, 21, 4303.	1.8	14
177	MicroRNA regulation of TRAIL mediated signaling in different cancers: Control of micro steering wheels during the journey from bench-top to the bedside. Seminars in Cancer Biology, 2019, 58, 56-64.	4.3	13
178	Natural Product Mediated Regulation of Death Receptors and Intracellular Machinery: Fresh from the Pipeline about TRAIL-Mediated Signaling and Natural TRAIL Sensitizers. International Journal of Molecular Sciences, 2019, 20, 2010.	1.8	13
179	Natural resorcylic acid lactones: A chemical biology approach for anticancer activity. Drug Discovery Today, 2022, 27, 547-557.	3.2	13
180	Structure of Some Green Tea Catechins and the Availability of Intracellular Copper Influence Their Ability to Cause Selective Oxidative DNA Damage in Malignant Cells. Biomedicines, 2022, 10, 664.	1.4	13

#	Article	IF	CITATIONS
181	(Carboxydiamine)Pt(ii) complexes of a combretastatin A-4 analogous chalcone: the influence of the diamine ligand on DNA binding and anticancer effects. MedChemComm, 2011, 2, 493.	3.5	11
182	Targeting MicroRNAs for Personalized Cancer Therapy. Medical Principles and Practice, 2013, 22, 415-417.	1.1	11
183	The Biological Significance of Zinc in Inflammation and Aging. , 2014, , 15-27.		11
184	Role of Nuclear Factor-kappa B Signaling in Anticancer Properties of Indole Compounds. Journal of Experimental and Clinical Medicine, 2011, 3, 55-62.	0.2	10
185	MicroRNAâ€mediated inflammation and coagulation effects in rats exposed to an inhaled analog of sulfur mustard. Annals of the New York Academy of Sciences, 2020, 1479, 148-158.	1.8	10
186	Exosome-Mediated Response to Cancer Therapy: Modulation of Epigenetic Machinery. International Journal of Molecular Sciences, 2022, 23, 6222.	1.8	10
187	Role of Vacuolar ATPase in the Trafficking of Renal Type IIa Sodium-phosphate Cotransporter. Cellular Physiology and Biochemistry, 2011, 27, 703-714.	1.1	9
188	Role of Novel Nutraceuticals Garcinol, Plumbagin and Mangiferin in the Prevention and Therapy of Human Malignancies: Mechanisms of Anticancer Activity. , 2012, , 179-199.		9
189	Simulating hypoxia-induced acidic environment in cancer cells facilitates mobilization and redox-cycling of genomic copper by daidzein leading to pro-oxidant cell death: implications for the sensitization of resistant hypoxic cancer cells to therapeutic challenges. BioMetals, 2016, 29, 299-310.	1.8	9
190	ATRA-hydrazonate derivatives and their copper complexes against hormone-dependent (MCF-7), hormone-independent (MDA-MB-231and BT-20) breast cancer and androgen-independent (PC3) prostate cancer cell lines. Inorganic Chemistry Communication, 2012, 23, 17-20.	1.8	8
191	The role of cancer stem cells and miRNAs in defining the complexities of brain metastasis. Journal of Cellular Physiology, 2013, 228, 36-42.	2.0	8
192	Pentafluorophenyl Substitution of Natural Di(indolâ€3â€yl)methane Strongly Enhances Growth Inhibition and Apoptosis Induction in Various Cancer Cell Lines. Chemistry and Biodiversity, 2019, 16, e1900028.	1.0	8
193	Venetoclax-Resistant MV4-11 Leukemic Cells Activate PI3K/AKT Pathway for Metabolic Reprogramming and Redox Adaptation for Survival. Antioxidants, 2022, 11, 461.	2.2	8
194	Editorial: Cancer Epigenetics. Current Cancer Drug Targets, 2017, 18, 3-4.	0.8	7
195	Gaze through the clinical lens: molecular and clinical advancements of botanicals. Future Medicinal Chemistry, 2019, 11, 75-77.	1.1	7
196	Transcriptional Control of the Oxidative Stress Response and Implications of Using Plant Derived Molecules for Therapeutic Interventions in Cancer. Current Medicinal Chemistry, 2021, 28, 8480-8495.	1.2	7
197	Thiostrepton inhibits growth and induces apoptosis by targeting FoxM1/SKP2/MTH1 axis in B-precursor acute lymphoblastic leukemia cells. Leukemia and Lymphoma, 2021, 62, 3170-3180.	0.6	7
198	Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management. Preface. Advances in Experimental Medicine and Biology, 2016, 890, v-vi.	0.8	7

#	Article	IF	CITATIONS
199	The Role of Mitochondria-Targeting miRNAs in Intracerebral Hemorrhage. Current Neuropharmacology, 2023, 21, 1065-1080.	1.4	7
200	Perspectives on New Synthetic Curcumin Analogs and their Potential Anticancer Properties. Current Pharmaceutical Design, 2013, 19, 2047-2069.	0.9	6
201	Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- KappaB signaling. Frontiers in Bioscience - Elite, 2009, E3, 1483.	0.9	5
202	Circulating and tissue biomarkers as predictors of bromine gas inhalation. Annals of the New York Academy of Sciences, 2020, 1480, 104-115.	1.8	5
203	Role of JNK and NF-κB in mediating the effect of combretastatin A-4 and brimamin on endothelial and carcinoma cells. Cellular Oncology (Dordrecht), 2015, 38, 463-478.	2.1	4
204	Epigenetic basis of cancer drug resistance. Cancer Drug Resistance (Alhambra, Calif), 2020, 3, 113-116.	0.9	4
205	Editorial: LncRNAs in Cancer Metastasis and Therapy Resistance. Frontiers in Oncology, 2021, 11, 813274.	1.3	4
206	Bioinformatics Analysis Reveals FOXM1/BUB1B Signaling Pathway as a Key Target of Neosetophomone B in Human Leukemic Cells: A Gene Network-Based Microarray Analysis. Frontiers in Oncology, 0, 12, .	1.3	4
207	Inhibition of I-DOPA–Cu(II)-mediated DNA cleavage by bilirubin. Toxicology in Vitro, 2000, 14, 401-404.	1.1	3
208	Metal-based anticancer agents: targeting androgen-dependent and androgen-independent prostate and COX-positive pancreatic cancer cells by phenanthrenequinone semicarbazone and its metal complexes. Transition Metal Chemistry, 2013, 38, 665-673.	0.7	3
209	Cancer Epigenetics: Clinical Perspectives. Current Cancer Drug Targets, 2019, 19, 513-514.	0.8	3
210	MicroRNA Targeted Therapy for Overcoming Drug Resistance, Reversal of EMT and Elimination of Cancer Stem Cells in Prostate and Pancreatic Cancer. , 2014, , 199-217.		3
211	Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biologia Futura, 2022, 73, 55.	0.6	3
212	Untargeted Metabolomics Showed Accumulation of One-Carbon Metabolites to Facilitate DNA Methylation during Extracellular Matrix Detachment of Cancer Cells. Metabolites, 2022, 12, 267.	1.3	3
213	Resistance and DNA Repair Mechanisms of Cancer Stem Cells: Potential Molecular Targets for Therapy. , 2013, , 33-52.		2
214	Exosomes. , 2018, , 261-283.		2
215	Sex differences in cardiopulmonary effects of acute bromine exposure. Toxicology Research, 2021, 10, 1064-1073.	0.9	2
216	Stem Cells and Cancer. , 2013, , 413-433.		2

Stem Cells and Cancer. , 2013, , 413-433. 216

#	Article	IF	CITATIONS
217	Yb/Chitosan Catalyzed Synthesis of Highly Substituted Piperidine Derivatives for Potential Nuclease Activity and DNA Binding Study. Current Pharmaceutical Design, 2021, 27, 2252-2263.	0.9	2
218	MicroRNAs in Cancer Invasion and Metastasis. , 2011, , 389-413.		1
219	The Complexities of Racial Disparity in Breast Cancer. , 2013, , 35-46.		1
220	Current Understanding of Drug Resistance Mechanisms and Therapeutic Targets in HER2 Overexpressing Breast Cancers. , 2013, , 261-274.		1
221	MicroRNAs in Breast Cancer Research: Progress and Promise. , 2013, , 399-413.		1
222	Bioinformatics analysis of potential therapeutic targets for COVID-19 infection in patients with carotid atherosclerosis. Journal of Infection and Public Health, 2022, 15, 437-447.	1.9	1
223	Epigenetic Regulations of mRNAs and miRNAs by Nutraceuticals. , 2013, , 251-272.		0
224	The Role of miRNAs in the Development of Normal Pancreas and Pancreatic Cancer, and Their Roles in Tumor Progression. , 2014, , 179-198.		0
225	The Biological Roles of MicroRNAs in Cancer Stem Cells. , 2014, , 295-320.		0
226	miRNAs in Cancer Stem Cells. , 2015, , 137-161.		0
227	Updates on the Promising Anticancer Activity of CDF, a Synthetic Curcumin Analogue. , 2016, , 3-12.		0
228	Modulation of Key Signaling Pathways in Cancer Cells by Dietary Factors. , 2016, , 273-284.		0
229	Nuclear Factor Kappa-B: Bridging Inflammation and Cancer. , 2021, , 23-49.		0
230	Plant-derived small molecule inhibitors as modulators of EMT pathway in cancer chemoprevention. Studies in Natural Products Chemistry, 2021, , 45-65.	0.8	0
231	Augmenting the Efficacy of Chemo- and Radio-Therapy by Nutraceuticals: Evidence from Pre-clinical and Clinical Trials. , 2012, , 355-376.		0
232	The Biology of the Deadly Love Connection Between Obesity, Diabetes, and Breast Cancer. , 2013, , 117-142.		0
233	The Therapeutic Role of MicroRNAs in Human Gliomas. , 2014, , 1-27.		0

#	ARTICLE	IF	CITATIONS
235	miRNA Targeted Therapy in Lung Cancer. , 2014, , 99-114.		0
236	Epigenetic Control of Pancreatic Carcinogenesis and Its Regulation by Natural Products. , 2019, , 251-270.		0
237	Mechanism of Gallic Acid Anticancer Activity Through Copper-Mediated Cell Death. , 2022, , 2559-2570.		0