
Vernonica E Franklin-Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034673/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Male–Female Crosstalk during Pollen Germination, Tube Growth and Guidance, and Double Fertilization. Molecular Plant, 2013, 6, 1018-1036.	8.3	282
2	Signaling and the Modulation of Pollen Tube Growth. Plant Cell, 1999, 11, 727-738.	6.6	280
3	Unravelling responseâ€specificity in Ca2+signalling pathways in plant cells. New Phytologist, 2001, 151, 7-33.	7.3	278
4	Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2265-2269.	7.1	255
5	Self-incompatibility triggers programmed cell death in Papaver pollen. Nature, 2004, 429, 305-309.	27.8	245
6	Gametophytic self-incompatibility: understanding the cellular mechanisms involved in "self―pollen tube inhibition. Planta, 2006, 224, 233-245.	3.2	194
7	Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature, 2009, 459, 992-995.	27.8	192
8	A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochemical Journal, 2008, 413, 389-404.	3.7	186
9	The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium. Plant Journal, 1993, 4, 163-177.	5.7	185
10	Signal-Mediated Depolymerization of Actin in Pollen during the Self-Incompatibility Response. Plant Cell, 2002, 14, 2613-2626.	6.6	171
11	Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends in Plant Science, 2003, 8, 598-605.	8.8	169
12	Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. Journal of Cell Biology, 2006, 174, 221-229.	5.2	150
13	Alterations in the Actin Cytoskeleton of Pollen Tubes Are Induced by the Self-Incompatibility Reaction in Papaver rhoeas. Plant Cell, 2000, 12, 1239-1251.	6.6	146
14	Regulation of actin dynamics by actin-binding proteins in pollen. Journal of Experimental Botany, 2010, 61, 1969-1986.	4.8	144
15	Reactive Oxygen Species and Nitric Oxide Mediate Actin Reorganization and Programmed Cell Death in the Self-Incompatibility Response of <i>Papaver</i> Â Â Â. Plant Physiology, 2011, 156, 404-416.	4.8	127
16	Ratio-imaging of Ca2+i in the self-incompatibility response in pollen tubes of Papaver rhoeas. Plant Journal, 1997, 12, 1375-1386.	5.7	116
17	Self-Incompatibility in Flowering Plants. , 2008, , .		109
18	Involvement of extracellular calcium influx in the self-incompatibility response ofPapaver rhoeas. Plant Journal, 2002, 29, 333-345.	5.7	105

#	Article	IF	CITATIONS
19	A Gelsolin-like Protein from Papaver rhoeas Pollen (PrABP80) Stimulates Calcium-regulated Severing and Depolymerization of Actin Filaments. Journal of Biological Chemistry, 2004, 279, 23364-23375.	3.4	103
20	Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in <i>Papaver</i> pollen. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18327-18332.	7.1	98
21	Recombinant stigmatic self-incompatibility (S-) protein elicits a Ca2+ transient in pollen of Papaver rhoeas. Plant Journal, 1995, 8, 299-307.	5.7	93
22	The molecular and genetic basis of pollen–pistil interactions. New Phytologist, 2001, 151, 565-584.	7.3	88
23	Increased Phosphorylation of a 26-kD Pollen Protein Is Induced by the Self-Incompatibility Response in Papaver rhoeas Plant Cell, 1996, 8, 713-724.	6.6	86
24	Evolution of self-compatibility by a mutant Sm-RNase in citrus. Nature Plants, 2020, 6, 131-142.	9.3	85
25	An in vitro bioassay for the stigmatic product of the self-incompatibility gene in Papaver rhoeas L New Phytologist, 1988, 110, 109-118.	7.3	83
26	Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature, 2006, 444, 490-493.	27.8	83
27	A Potential Signaling Role for Profilin in Pollen of Papaver rhoeas. Plant Cell, 1998, 10, 967-979.	6.6	82
28	Taking one for the team: self-recognition and cell suicide in pollen. Journal of Experimental Botany, 2014, 65, 1331-1342.	4.8	81
29	Calcium signaling in plants. Cellular and Molecular Life Sciences, 1999, 55, 214-232.	5.4	79
30	A Mitogen-Activated Protein Kinase Signals to Programmed Cell Death Induced by Self-Incompatibility in <i>Papaver</i> Pollen. Plant Physiology, 2007, 145, 236-245.	4.8	77
31	Identification of Residues in a Hydrophilic Loop of the Papaver rhoeas S Protein That Play a Crucial Role in Recognition of Incompatible Pollen. Plant Cell, 1998, 10, 1723-1731.	6.6	72
32	Microtubules Are a Target for Self-Incompatibility Signaling in <i>Papaver</i> Pollen. Plant Physiology, 2008, 146, 1358-1367.	4.8	71
33	Signaling in pollination. Current Opinion in Plant Biology, 1999, 2, 490-495.	7.1	68
34	Evidence for DNA fragmentation triggered in the self-incompatibility response in pollen of Papaver rhoeas. Plant Journal, 2000, 23, 471-479.	5.7	67
35	Self-incompatibility in <i>Papaver</i> : signalling to trigger PCD in incompatible pollen. Journal of Experimental Botany, 2008, 59, 481-490.	4.8	64
36	Self-Incompatibility-Induced Programmed Cell Death in Field Poppy Pollen Involves Dramatic Acidification of the Incompatible Pollen Tube Cytosol Â. Plant Physiology, 2015, 167, 766-779.	4.8	63

#	Article	IF	CITATIONS
37	Growth of Pollen Tubes of Papaver rhoeas Is Regulated by a Slow-Moving Calcium Wave Propagated by Inositol 1,4,5-Trisphosphate. Plant Cell, 1996, 8, 1305.	6.6	60
38	Molecular analysis of two functional homologues of the S 3 allele of the Papaver rhoeas self-incompatibility gene isolated from different populations. Plant Molecular Biology, 1996, 30, 983-994.	3.9	59
39	Self-Incompatibility in <i>Papaver rhoeas</i> Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+ Â. Plant Physiology, 2011, 155, 963-973.	4.8	58
40	The different mechanisms of gametophytic self–incompatibility. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1025-1032.	4.0	55
41	The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. Journal of Experimental Botany, 2010, 61, 2015-2025.	4.8	49
42	Activation of a putative MAP kinase in pollen is stimulated by the self-incompatibility (SI) response. FEBS Letters, 2003, 547, 223-227.	2.8	47
43	The <i>Papaver rhoeas S</i> determinants confer self-incompatibility to <i>Arabidopsis thaliana</i> in planta. Science, 2015, 350, 684-687.	12.6	42
44	The Papaver Self-Incompatibility Pollen S-Determinant, PrpS, Functions in Arabidopsis thaliana. Current Biology, 2012, 22, 154-159.	3.9	40
45	Self-incompatibility in Papaver rhoeas: there is no evidence for the involvement of stigmatic ribonuclease activity. Plant, Cell and Environment, 1991, 14, 423-429.	5.7	39
46	Identification and cloning of related self-incompatibility S -genes in Papaver rhoeas and Papaver nudicaule. Sexual Plant Reproduction, 1998, 11, 192-198.	2.2	39
47	Actin-Binding Proteins Implicated in the Formation of the Punctate Actin Foci Stimulated by the Self-Incompatibility Response in <i>Papaver</i> . Plant Physiology, 2010, 152, 1274-1283.	4.8	38
48	The difficult question of sex: the mating game. Current Opinion in Plant Biology, 2002, 5, 14-18.	7.1	36
49	Signals and targets of the self-incompatibility response in pollen of Papaver rhoeas. Journal of Experimental Botany, 2003, 54, 141-148.	4.8	36
50	Self-incompatibility in <i>Papaver</i> : advances in integrating the signalling network. Biochemical Society Transactions, 2014, 42, 370-376.	3.4	36
51	MAP Kinase PrMPK9-1 Contributes to the Self-Incompatibility Response. Plant Physiology, 2017, 174, 1226-1237.	4.8	35
52	Initiation of Programmed Cell Death in Self-Incompatibility: Role for Cytoskeleton Modifications and Several Caspase-Like Activities. Molecular Plant, 2008, 1, 879-887.	8.3	34
53	Ca 2+ â€independent phosphorylation of a 68 kDa pollen protein is stimulated by the selfâ€incompatibility response in Papaver rhoeas. Plant Journal, 1997, 12, 507-514.	5.7	33
54	S-protein mutants indicate a functional role for SBP in the self-incompatibility reaction of Papaver rhoeas. Plant Journal, 1999, 20, 119-125.	5.7	33

#	Article	IF	CITATIONS
55	Characterization of a stigmatic component from Papaver rhoeas L. which exhibits the specific activity of a self-incompatibility (S-) gene product. New Phytologist, 1989, 112, 307-315.	7.3	32
56	Gametophytic self-incompatibility inPapaver rhoeas L Sexual Plant Reproduction, 1992, 5, 1-7.	2.2	32
57	A Compartmental Model Analysis of Integrative and Self-Regulatory Ion Dynamics in Pollen Tube Growth. PLoS ONE, 2010, 5, e13157.	2.5	31
58	Characterization of a legumain/vacuolar processing enzyme and YVADase activity in Papaver pollen. Plant Molecular Biology, 2010, 74, 381-393.	3.9	28
59	Selfâ€Incompatibility in Papaver rhoeas L.: inhibition of incompatible pollen tube growth is dependent on pollen gene expression. New Phytologist, 1990, 116, 319-324.	7.3	27
60	Gametophytic self-incompatibility: contrasting mechanisms for Nicotiana and Papaver. Trends in Cell Biology, 1993, 3, 340-345.	7.9	24
61	Cytomechanical Properties of Papaver Pollen Tubes Are Altered after Self-Incompatibility Challenge. Biophysical Journal, 2004, 86, 3314-3323.	0.5	20
62	Investigating mechanisms involved in the self–incompatibility response in Papaver rhoeas. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1033-1036.	4.0	19
63	Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen. Annals of Botany, 2011, 108, 659-675.	2.9	19
64	Inhibition of Self-incompatible Pollen in Papaver rhoeas Involves a Complex Series of Cellular Events. Annals of Botany, 2000, 85, 197-202.	2.9	18
65	Ectopic Expression of a Self-Incompatibility Module Triggers Growth Arrest and Cell Death in Vegetative Cells. Plant Physiology, 2020, 183, 1765-1779.	4.8	18
66	New opportunities and insights into Papaver self-incompatibility by imaging engineered Arabidopsis pollen. Journal of Experimental Botany, 2020, 71, 2451-2463.	4.8	18
67	Self-incompatibility inPapaverpollen: programmed cell death in an acidic environment. Journal of Experimental Botany, 2018, 70, 2113-2123.	4.8	17
68	Ca 2+ â€independent phosphorylation of a 68 kDa pollen protein is stimulated by the selfâ€incompatibility response in Papaver rhoeas. Plant Journal, 1997, 12, 507-514.	5.7	14
69	Self-Incompatibility in Brassica: The Elusive Pollen S Gene Is Identified!. Plant Cell, 2000, 12, 305-308.	6.6	14
70	Self-incompatibility in Papaver: identification of the pollen S-determinant PrpS. Biochemical Society Transactions, 2010, 38, 588-592.	3.4	14
71	Self-Incompatibility Triggers Irreversible Oxidative Modification of Proteins in Incompatible Pollen. Plant Physiology, 2020, 183, 1391-1404.	4.8	13
72	Increased Phosphorylation of a 26-kD Pollen Protein Is Induced by the Self-Incompatibility Response in Papaver rhoeas. Plant Cell, 1996, 8, 713.	6.6	12

#	Article	IF	CITATIONS
73	Genomic organization of the Papaver rhoeas self-incompatibility S1 locus. Journal of Experimental Botany, 2003, 54, 131-139.	4.8	12
74	Self-incompatibility requires GPI anchor remodeling by the poppy PGAP1 ortholog HLD1. Current Biology, 2022, 32, 1909-1923.e5.	3.9	12
75	Receptor–ligand interaction demonstrated in Brassica self-incompatibility. Trends in Genetics, 2002, 18, 113-115.	6.7	10
76	Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity. Plant Physiology, 2017, 173, 1606-1616.	4.8	10
77	Villin Controls the Formation and Enlargement of Punctate Actin Foci in Pollen Tubes. Journal of Cell Science, 2020, 133, .	2.0	10
78	Plant Fertilization: Bursting Pollen Tubes!. Current Biology, 2010, 20, R681-R683.	3.9	9
79	Molecular basis of the incompatibility mechanism in Papaver rhoeas L Plant Growth Regulation, 1992, 11, 5-12.	3.4	8
80	The intracellular events triggered by the self-incompatibility response inPapaver rhoeas. Protoplasma, 1999, 208, 99-106.	2.1	8
81	Modulating and Monitoring MAPK Activity During Programmed Cell Death in Pollen. Methods in Molecular Biology, 2011, 779, 165-183.	0.9	7
82	Inhibiting Selfâ€Pollen: Selfâ€Incompatibility in <i>Papaver</i> Involves Integration of Several Signaling Events. Journal of Integrative Plant Biology, 2007, 49, 1219-1226.	8.5	6
83	Self-incompatibility: Calcium signalling in Brassica. Nature Plants, 2015, 1, 15129.	9.3	6
84	A Potential Signaling Role for Profilin in Pollen of Papaver rhoeas. Plant Cell, 1998, 10, 967.	6.6	5
85	Cellular Mechanisms for Pollen Tube Growth Inhibition in Gametophytic Self-incompatibility. , 0, , 201-221.		5
86	Specifying selfâ€recognition: peptides lead the way. New Phytologist, 2007, 175, 597-599.	7.3	5
87	Alterations in the Actin Cytoskeleton of Pollen Tubes Are Induced by the Self-Incompatibility Reaction in Papaver rhoeas. Plant Cell, 2000, 12, 1239.	6.6	4
88	Plant biology: Stigmatic ROS decide whether pollen isÂaccepted or rejected. Current Biology, 2021, 31, R904-R906.	3.9	4
89	Signaling and the Modulation of Pollen Tube Growth. Plant Cell, 1999, 11, 727.	6.6	3
90	Self-incompatibility in Papaver. Plant Signaling and Behavior, 2008, 3, 243-245.	2.4	3

#	Article	IF	CITATIONS
91	Actin Rearrangements in Pollen Tubes are Stimulated by the Self-Incompatibility (SI) Response in Papaver Rhoeas L. , 2000, , 347-360.		3
92	Identification of Residues in a Hydrophilic Loop of the Papaver rhoeas S Protein That Play a Crucial Role in Recognition of Incompatible Pollen. Plant Cell, 1998, 10, 1723.	6.6	2
93	The stigma of death. Nature Plants, 2018, 4, 323-324.	9.3	1
94	Second-messenger-induced signalling events in pollen tubes of Papaver rhoeas. Experimental Biology Online, 1997, 2, 1-17.	1.0	0
95	Self-Incompatibility in Brassica: The Elusive Pollen S Gene Is Identified!. Plant Cell, 2000, 12, 305.	6.6	0
96	An SI-independent regulator. Nature Plants, 2019, 5, 650-651.	9.3	0
97	Papaver rhoeas S-Determinants and the Signaling Networks They Trigger. , 2014, , 273-287.		0