Bruce E Kendall

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8034655/publications.pdf
Version: 2024-02-01

1 Comments to â€œPersistent problems in the construction of matrix population modelsâ€: Ecological Modelling, 2020, 416, 108913. 2.5 8
Locating gaps in the California Current System ocean acidification monitoring network. Science 1.9 Progress, 2020, 103, 36850420936204. 1
22.113
Within Reach? Habitat Availability as a Function of Individual Mobility and Spatial Structuring.
3 American Naturalist, 2020, 195, 1009-1026.2.1
8.76
Analogies for a No-Analog World: Tackling Uncertainties in Reintroduction Planning. Trends in 6
Ecology and Evolution, 2020, 35, 551-554.$4.1 \quad 4$
Distinguishing local and global co
Distributions, 2019, 25, 797-808.2.549Persistent problems in the construction of matrix population models. Ecological Modelling, 2019,
406, 33-43.
Causal analysis in controlâ€"impact ecological studies with observational data. Methods in Ecology 5.2 62
Causal analysis in controlấ ${ }^{\text {"impact }}$
and Evolution, 2019, 10, 924-934.6.458 Predicting coral community recovery using multiâ€species population dynamics models. Ecology Letters,2019, 22, 605-615.Predicting the evolutionary consequences of trophy hunting on a quantitative trait. Journal ofWildlife Management, 2018, 82, 46-56.
1.8 25
Boldness-aggression syndromes can reduce population density: behavior and demographic heterogeneity. Behavioral Ecology, 2018, 29, 31-41. 2.25
11 Predicting coral community recovery using multiâ€species population dynamics models. Ecology Letters,
2018, 21, 1790-1799. 59
12 Resetting predator baselines in coral reef ecosystems. Scientific Reports, 2017, 7, 43131.3.344
13 Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover 12.8 315 sites. Nature Communications, 2017, 8, 14895.1.020
Interspecific interactions and range limits: contrasts among interaction types. Theoretical Ecology,2017, 10, 167-179.
2.1 76Modeling Adaptive and Nonadaptive Responses of Populations to Environmental Change. American
Naturalist, 2017, 190, 313-336.Growth and life history variability of the grey reef shark (Carcharhinus amblyrhynchos) across its
19 Some directions in ecological theory. Ecology, 2015, 96, 3117-3125.

$20 \quad$| The role of scale in designing protected area systems to conserve poorly known species. Ecosphere, |
| :--- |
| $2015,6,1-17$. |

21 A statistical symphony. , 2015, $149-167$.

22 Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational

23	Impacts of sea level rise and climate change on coastal plant species in the central California coast. Peerl, 2015, 3, e958.	2.0	24
24	Fishery management priorities vary with selfâ€fecruitment in sedentary marine populations. Ecological Applications, 2014, 24, 1490-1504.	3.8	20
25	Consequences of Dispersal Heterogeneity for Population Spread and Persistence. Bulletin of Mathematical Biology, 2014, 76, 2681-2710.	1.9	10
26	Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls. Ecology, 2013, 94, 499-509.	3.2	54
27	Changing Seascapes, Stochastic Connectivity, and Marine Metapopulation Dynamics. American Naturalist, 2012, 180, 99-112.	2.1	86

37	The diffusion approximation overestimates the extinction risk for countâ€based PVA. Conservation Letters, 2009, 2, 216-225.	5.7	4
38	Effects of community-level grassland management on the non-target rare annual Agalinis auriculata. Biological Conservation, 2009, 142, 798-805.	4.1	18
39	Striking a Balance between Biodiversity Conservation and Socioeconomic Viability in the Design of Marine Protected Areas. Conservation Biology, 2008, 22, 691-700.	4.7	249
40	Marine reserve effects on fishery profit. Ecology Letters, 2008, 11, 370-379.	6.4	95
41	LONGEVITY CAN BUFFER PLANT AND ANIMAL POPULATIONS AGAINST CHANGING CLIMATIC VARIAB Ecology, 2008, 89, 19-25.	3.2	386
42	The stochastic nature of larval connectivity among nearshore marine populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8974-8979.	7.1	334
43	A reassessment of equivalence in yield from marine reserves and traditional fisheries managament. Oikos, 2007, 116, 2039-2043.	2.7	38

44 Demography in an increasingly variable world. Trends in Ecology and Evolution, 2006, 21, 141-148.
8.7

361
45 Plant-soil feedbacks and invasive spread. Ecology Letters, 2006, 9, 1005-1014. 6.4

46 Consequences of heterogeneity in survival probability in a population of Florida scrub-jays. Journal of Animal Ecology, 2006, 75, 921-927.
$2.8 \quad 48$
Estimating individual contributions to population growth: evolutionary fitness in ecological time.
Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 547-555.
ANALYSIS OF SIZE TRAJECTORY DATA USING AN ENERGETIC-BASED GROWTH MODEL. Ecology, 2005, 86,

3.2

22
5.4

49 Ecological Monographs, 2005, 75, 259-276.

Correctly Estimating How Environmental Stochasticity Influences Fitness and Population Growth.
2.1

140
American Naturalist, 2005, 166, E14-E21.
1.6

41
Distribution of plants in a California serpentine grass
native species?. Plant Ecology, 2004, 172, 159-171.

An introduction to biodiversity concepts for environmental economists. Resources and Energy
2.5

63
Economics, 2004, 26, 115-136.

53 Unstructured Individual Variation and Demographic Stochasticity. Conservation Biology, 2003, 17,
4.7

57

\#	Article	IF	Citations
55	DYNAMICAL EFFECTS OF PLANT QUALITY AND PARASITISM ON POPULATION CYCLES OF LARCH BUDMOTH. Ecology, 2003, 84, 1207-1214.	3.2	130
56	COMPETITION, SEED LIMITATION, DISTURBANCE, AND REESTABLISHMENT OF CALIFORNIA NATIVE ANNUAL FORBS. , 2003, 13, 575-592.		181
57	DEMOGRAPHIC STOCHASTICITY AND THE VARIANCE REDUCTION EFFECT. Ecology, 2002, 83, 1928-1934.	3.2	80
58	Variation among Individuals and Reduced Demographic Stochasticity. Conservation Biology, 2002, 16, 109-116.	4.7	130
59	Single-species models for many-species food webs. Nature, 2002, 417, 541-543.	27.8	142
60	Cycles, chaos, and noise in predatorấ"prey dynamics. Chaos, Solitons and Fractals, 2001, 12, 321-332.	5.1	43
61	Habitat structure and population persistence in an experimental community. Nature, 2001, 412, 538-543.	27.8	187
62	INFERRING COLONIZATION PROCESSES FROM POPULATION DYNAMICS IN SPATIALLY STRUCTURED PREDATORâ€"PREY SYSTEMS. Ecology, 2000, 81, 3350-3361.	3.2	7
63	Inferring Colonization Processes from Population Dynamics in Spatially Structured Predator-Prey Systems. Ecology, 2000, 81, 3350.	3.2	16
64	Dispersal, Environmental Correlation, and Spatial Synchrony in Population Dynamics. American Naturalist, 2000, 155, 628-636.	2.1	252
65	WHY DO POPULATIONS CYCLE? A SYNTHESIS OF STATISTICAL AND MECHANISTIC MODELING APPROACHES. Ecology, 1999, 80, 1789-1805.	3.2	300
66	The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles. Ecology Letters, 1998, 1, 160-164.	6.4	214
67	Spatial Structure, Environmental Heterogeneity, and Population Dynamics: Analysis of the Coupled Logistic Map. Theoretical Population Biology, 1998, 54, 11-37.	1.1	91

68 ESTIMATING THE MAGNITUDE OF ENVIRONMENTAL STOCHASTICITY IN SURVIVORSHIP DATA. , 1998, 8, 184-193. 81

69 Estimating the Magnitude of Environmental Stochasticity in Survivorship Data. , 1998, 8, 184.

Inferring mechanism from time-series data: Delay-differential equations. Physica D: Nonlinear Phenomena, 1997, 110, 182-194.

