Bruce E Kendall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034655/publications.pdf

Version: 2024-02-01

73 6,208 38 69
papers citations h-index g-index

81 81 81 7427
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comments to "Persistent problems in the construction of matrix population models― Ecological Modelling, 2020, 416, 108913.	2.5	8
2	Locating gaps in the California Current System ocean acidification monitoring network. Science Progress, 2020, 103, 36850420936204.	1.9	1
3	Within Reach? Habitat Availability as a Function of Individual Mobility and Spatial Structuring. American Naturalist, 2020, 195, 1009-1026.	2.1	13
4	Analogies for a No-Analog World: Tackling Uncertainties in Reintroduction Planning. Trends in Ecology and Evolution, 2020, 35, 551-554.	8.7	6
5	Distinguishing local and global correlates of population change in migratory species. Diversity and Distributions, 2019, 25, 797-808.	4.1	4
6	Persistent problems in the construction of matrix population models. Ecological Modelling, 2019, 406, 33-43.	2.5	49
7	Causal analysis in control–impact ecological studies with observational data. Methods in Ecology and Evolution, 2019, 10, 924-934.	5.2	62
8	Predicting coral community recovery using multiâ€species population dynamics models. Ecology Letters, 2019, 22, 605-615.	6.4	5
9	Predicting the evolutionary consequences of trophy hunting on a quantitative trait. Journal of Wildlife Management, 2018, 82, 46-56.	1.8	25
10	Boldness-aggression syndromes can reduce population density: behavior and demographic heterogeneity. Behavioral Ecology, 2018, 29, 31-41.	2,2	5
11	Predicting coral community recovery using multiâ€species population dynamics models. Ecology Letters, 2018, 21, 1790-1799.	6.4	59
12	Resetting predator baselines in coral reef ecosystems. Scientific Reports, 2017, 7, 43131.	3.3	44
13	Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nature Communications, 2017, 8, 14895.	12.8	315
14	Interspecific interactions and range limits: contrasts among interaction types. Theoretical Ecology, 2017, 10, 167-179.	1.0	20
15	Modeling Adaptive and Nonadaptive Responses of Populations to Environmental Change. American Naturalist, 2017, 190, 313-336.	2.1	76
16	Growth and life history variability of the grey reef shark (Carcharhinus amblyrhynchos) across its range. PLoS ONE, 2017, 12, e0172370.	2.5	29
17	Rapid evolution accelerates plant population spread in fragmented experimental landscapes. Science, 2016, 353, 482-485.	12.6	125
18	Landscape effects on wild Bombus terrestris (Hymenoptera: Apidae) queens visiting highbush blueberry fields in south-central Chile. Apidologie, 2016, 47, 711-716.	2.0	14

#	Article	IF	Citations
19	Some directions in ecological theory. Ecology, 2015, 96, 3117-3125.	3.2	14
20	The role of scale in designing protected area systems to conserve poorly known species. Ecosphere, 2015, 6, 1-17.	2.2	3
21	A statistical symphony. , 2015, , 149-167.		13
22	Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational boater movement and habitat suitability. Peerl, 2015, 3, e845.	2.0	5
23	Impacts of sea level rise and climate change on coastal plant species in the central California coast. PeerJ, 2015, 3, e958.	2.0	24
24	Fishery management priorities vary with selfâ€recruitment in sedentary marine populations. Ecological Applications, 2014, 24, 1490-1504.	3.8	20
25	Consequences of Dispersal Heterogeneity for Population Spread and Persistence. Bulletin of Mathematical Biology, 2014, 76, 2681-2710.	1.9	10
26	Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls. Ecology, 2013, 94, 499-509.	3.2	54
27	Changing Seascapes, Stochastic Connectivity, and Marine Metapopulation Dynamics. American Naturalist, 2012, 180, 99-112.	2.1	86
28	Demographic heterogeneity impacts density-dependent population dynamics. Theoretical Ecology, 2012, 5, 297-309.	1.0	37
29	The value of coordinated management of interacting ecosystem services. Ecology Letters, 2012, 15, 509-519.	6.4	33
30	Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 2011, 20, 789-802.	5.8	355
31	Analyzing Variability and the Rate of Decline of Migratory Shorebirds in Moreton Bay, Australia. Conservation Biology, 2011, 25, 758-766.	4.7	66
32	Variability in Population Abundance and the Classification of Extinction Risk. Conservation Biology, 2011, 25, 747-757.	4.7	49
33	Demographic heterogeneity, cohort selection, and population growth. Ecology, 2011, 92, 1985-1993.	3.2	87
34	Identifying critical regions in small-world marine metapopulations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E907-13.	7.1	107
35	Turbulent dispersal promotes species coexistence. Ecology Letters, 2010, 13, 360-371.	6.4	75
36	A Stochastic Model for Annual Reproductive Success. American Naturalist, 2010, 175, 461-468.	2.1	40

#	Article	IF	CITATIONS
37	The diffusion approximation overestimates the extinction risk for countâ€based PVA. Conservation Letters, 2009, 2, 216-225.	5.7	4
38	Effects of community-level grassland management on the non-target rare annual Agalinis auriculata. Biological Conservation, 2009, 142, 798-805.	4.1	18
39	Striking a Balance between Biodiversity Conservation and Socioeconomic Viability in the Design of Marine Protected Areas. Conservation Biology, 2008, 22, 691-700.	4.7	249
40	Marine reserve effects on fishery profit. Ecology Letters, 2008, 11, 370-379.	6.4	95
41	LONGEVITY CAN BUFFER PLANT AND ANIMAL POPULATIONS AGAINST CHANGING CLIMATIC VARIABILITY. Ecology, 2008, 89, 19-25.	3.2	386
42	The stochastic nature of larval connectivity among nearshore marine populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8974-8979.	7.1	334
43	A reassessment of equivalence in yield from marine reserves and traditional fisheries managament. Oikos, 2007, 116, 2039-2043.	2.7	38
44	Demography in an increasingly variable world. Trends in Ecology and Evolution, 2006, 21, 141-148.	8.7	361
45	Plant-soil feedbacks and invasive spread. Ecology Letters, 2006, 9, 1005-1014.	6.4	163
46	Consequences of heterogeneity in survival probability in a population of Florida scrub-jays. Journal of Animal Ecology, 2006, 75, 921-927.	2.8	48
47	Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 547-555.	2.6	184
48	ANALYSIS OF SIZE TRAJECTORY DATA USING AN ENERGETIC-BASED GROWTH MODEL. Ecology, 2005, 86, 1441-1451.	3.2	22
49	POPULATION CYCLES IN THE PINE LOOPER MOTH: DYNAMICAL TESTS OF MECHANISTIC HYPOTHESES. Ecological Monographs, 2005, 75, 259-276.	5.4	56
50	Correctly Estimating How Environmental Stochasticity Influences Fitness and Population Growth. American Naturalist, 2005, 166, E14-E21.	2.1	140
51	Distribution of plants in a California serpentine grassland: are rocky hummocks spatial refuges for native species?. Plant Ecology, 2004, 172, 159-171.	1.6	41
52	An introduction to biodiversity concepts for environmental economists. Resources and Energy Economics, 2004, 26, 115-136.	2.5	63
53	Unstructured Individual Variation and Demographic Stochasticity. Conservation Biology, 2003, 17, 1170-1172.	4.7	57
54	Growth autocorrelation and animal size variation. Ecology Letters, 2003, 7, 106-113.	6.4	39

#	Article	IF	CITATIONS
55	DYNAMICAL EFFECTS OF PLANT QUALITY AND PARASITISM ON POPULATION CYCLES OF LARCH BUDMOTH. Ecology, 2003, 84, 1207-1214.	3.2	130
56	COMPETITION, SEED LIMITATION, DISTURBANCE, AND REESTABLISHMENT OF CALIFORNIA NATIVE ANNUAL FORBS. , 2003, 13, 575-592.		181
57	DEMOGRAPHIC STOCHASTICITY AND THE VARIANCE REDUCTION EFFECT. Ecology, 2002, 83, 1928-1934.	3.2	80
58	Variation among Individuals and Reduced Demographic Stochasticity. Conservation Biology, 2002, 16, 109-116.	4.7	130
59	Single-species models for many-species food webs. Nature, 2002, 417, 541-543.	27.8	142
60	Cycles, chaos, and noise in predator–prey dynamics. Chaos, Solitons and Fractals, 2001, 12, 321-332.	5.1	43
61	Habitat structure and population persistence in an experimental community. Nature, 2001, 412, 538-543.	27.8	187
62	INFERRING COLONIZATION PROCESSES FROM POPULATION DYNAMICS IN SPATIALLY STRUCTURED PREDATOR–PREY SYSTEMS. Ecology, 2000, 81, 3350-3361.	3.2	7
63	Inferring Colonization Processes from Population Dynamics in Spatially Structured Predator-Prey Systems. Ecology, 2000, 81, 3350.	3.2	16
64	Dispersal, Environmental Correlation, and Spatial Synchrony in Population Dynamics. American Naturalist, 2000, 155, 628-636.	2.1	252
65	WHY DO POPULATIONS CYCLE? A SYNTHESIS OF STATISTICAL AND MECHANISTIC MODELING APPROACHES. Ecology, 1999, 80, 1789-1805.	3.2	300
66	The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles. Ecology Letters, 1998, 1, 160-164.	6.4	214
67	Spatial Structure, Environmental Heterogeneity, and Population Dynamics: Analysis of the Coupled Logistic Map. Theoretical Population Biology, 1998, 54, 11-37.	1.1	91
68	ESTIMATING THE MAGNITUDE OF ENVIRONMENTAL STOCHASTICITY IN SURVIVORSHIP DATA. , 1998, 8, 184-193.		81
69	Estimating the Magnitude of Environmental Stochasticity in Survivorship Data. , 1998, 8, 184.		3
70	Inferring mechanism from time-series data: Delay-differential equations. Physica D: Nonlinear Phenomena, 1997, 110, 182-194.	2.8	42
71	Using Chaos to Understand Biological Dynamics. , 1994, , 184-203.		1
72	Transient periodicity in chaos. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 177, 13-20.	2.1	24

#	Article	IF	CITATIONS
73	Transient periodicity and episodic predictability in biological dynamics. Mathematical Medicine and Biology, 1993, 10, 227-247.	1.2	31