## Pascale Legault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034520/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy:Â Application to<br>a Bacteriophage λ N-Peptide/boxBRNA Complex. Journal of the American Chemical Society, 1997, 119,<br>6711-6721.     | 13.7 | 583       |
| 2  | Preparation of13C and15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic<br>Acids Research, 1992, 20, 4507-4513.                                                                                 | 14.5 | 328       |
| 3  | NMR Structure of the Bacteriophage λ N Peptide/boxB RNA Complex: Recognition of a GNRA Fold by an<br>Arginine-Rich Motif. Cell, 1998, 93, 289-299.                                                                      | 28.9 | 257       |
| 4  | Structure of the Tfb1/p53 Complex: Insights into the Interaction between the p62/Tfb1 Subunit of TFIIH and the Activation Domain of p53. Molecular Cell, 2006, 22, 731-740.                                             | 9.7  | 190       |
| 5  | Unusual Dynamics and pKaShift at the Active Site of a Lead-Dependent Ribozyme‡. Journal of the<br>American Chemical Society, 1997, 119, 6621-6628.                                                                      | 13.7 | 167       |
| 6  | Solution Structure of Bovine Neutrophil .betaDefensin-12: The Peptide Fold of the .betaDefensins Is<br>Identical to That of the Classical Defensins. Biochemistry, 1995, 34, 13663-13671.                               | 2.5  | 158       |
| 7  | Improved RNA Structure Determination by Detection of NOE Contacts to Exchange-Broadened Amino Protons. Journal of the American Chemical Society, 1995, 117, 11043-11048.                                                | 13.7 | 112       |
| 8  | In situ Probing of Adenine Protonation in RNA by 13C NMR. Journal of the American Chemical Society, 1994, 116, 8390-8391.                                                                                               | 13.7 | 93        |
| 9  | Independent Ligand-Induced Folding of the RNA-Binding Domain and Two Functionally Distinct<br>Antitermination Regions in the Phage λ N Protein. Molecular Cell, 1998, 1, 265-275.                                       | 9.7  | 87        |
| 10 | NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis 1<br>1Edited by I. Tinoco. Journal of Molecular Biology, 1998, 284, 337-350.                                              | 4.2  | 82        |
| 11 | Through-Bond Correlation of Adenine Protons in a 13C-Labeled Ribozyme. Journal of the American Chemical Society, 1994, 116, 2203-2204.                                                                                  | 13.7 | 73        |
| 12 | Order, dynamics and metal-binding in the lead-dependent ribozyme 1 1Edited by I. Tinoco. Journal of<br>Molecular Biology, 1998, 284, 325-335.                                                                           | 4.2  | 67        |
| 13 | Structure of a (Cys <sub>3</sub> His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Science, 2000, 9, 1743-1752.                                                                      | 7.6  | 62        |
| 14 | NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7003-7008.                         | 7.1  | 61        |
| 15 | Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Research, 2017, 45, 5564-5576.                             | 14.5 | 51        |
| 16 | A Stable Mercury-Containing Complex of the Organomercurial Lyase MerB:  Catalysis, Product Release,<br>and Direct Transfer to MerA. Biochemistry, 2004, 43, 8333-8345.                                                  | 2.5  | 49        |
| 17 | NMR Structure of the Complex between the Tfb1 Subunit of TFIIH and the Activation Domain of VP16:<br>Structural Similarities between VP16 and p53. Journal of the American Chemical Society, 2008, 130,<br>10596-10604. | 13.7 | 48        |
| 18 | Improved measurement of13C,31P J coupling constants in isotopically labeled RNA. FEBS Letters, 1995, 362, 156-160.                                                                                                      | 2.8  | 47        |

PASCALE LEGAULT

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | NMR Structure of the Amino-Terminal Domain from the Tfb1 Subunit of TFIIH and Characterization of<br>Its Phosphoinositide and VP16 Binding Sitesâ€,‡. Biochemistry, 2005, 44, 7678-7686.                                                        | 2.5  | 46        |
| 20 | p53 and TFIIEα share a common binding site on the Tfb1/p62 subunit of TFIIH. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 106-111.                                                               | 7.1  | 45        |
| 21 | Riboswitch structure: an internal residue mimicking the purine ligand. Nucleic Acids Research, 2010, 38, 2057-2068.                                                                                                                             | 14.5 | 45        |
| 22 | Studies on the Mechanism of Inactivation of the HIV-1 Nucleocapsid Protein NCp7 with 2-Mercaptobenzamide Thioesters. Journal of Medicinal Chemistry, 2005, 48, 2847-2858.                                                                       | 6.4  | 44        |
| 23 | Functional and structural characterization of a dense core secretory granule sorting domain from the PC1/3 protease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7408-7413.                     | 7.1  | 39        |
| 24 | NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II<br>carboxyl-terminal domain phosphatase FCP1. Proceedings of the National Academy of Sciences of the<br>United States of America, 2003, 100, 5688-5693. | 7.1  | 38        |
| 25 | NMR Structure of Varkud Satellite Ribozyme Stemâ^'Loop V in the Presence of Magnesium lons and Localization of Metal-Binding Sites,. Biochemistry, 2006, 45, 10591-10605.                                                                       | 2.5  | 38        |
| 26 | NMR Structural Studies Reveal a Novel Protein Fold for MerB, the Organomercurial Lyase Involved in the Bacterial Mercury Resistance System,. Biochemistry, 2004, 43, 8322-8332.                                                                 | 2.5  | 37        |
| 27 | The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions. Nucleic Acids<br>Research, 2011, 39, e18-e18.                                                                                                         | 14.5 | 32        |
| 28 | Importance of the NCp7-like domain in the recognition of pre-let-7g by the pluripotency factor Lin28.<br>Nucleic Acids Research, 2012, 40, 1767-1777.                                                                                           | 14.5 | 32        |
| 29 | A remarkably stable kissing-loop interaction defines substrate recognition by the <i>Neurospora</i> Varkud Satellite ribozyme. Rna, 2014, 20, 1451-1464.                                                                                        | 3.5  | 32        |
| 30 | Structural and functional evidence that Rad4 competes with Rad2 for binding to the Tfb1 subunit of TFIIH in NER. Nucleic Acids Research, 2013, 41, 2736-2745.                                                                                   | 14.5 | 31        |
| 31 | Nuclear Magnetic Resonance Structure of the Varkud Satellite Ribozyme Stemâ^'Loop V RNA and<br>Magnesium-Ion Binding from Chemical-Shift Mappingâ€,‡. Biochemistry, 2005, 44, 4157-4170.                                                        | 2.5  | 29        |
| 32 | Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags. Rna, 2013, 19, 1003-1014.                                                                                                                        | 3.5  | 28        |
| 33 | Nuclear Magnetic Resonance Structure of the III–IV–V Three-Way Junction from the Varkud Satellite<br>Ribozyme and Identification of Magnesium-Binding Sites Using Paramagnetic Relaxation Enhancement.<br>Biochemistry, 2014, 53, 6264-6275.    | 2.5  | 27        |
| 34 | NMR Localization of Divalent Cations at the Active Site of the <i>Neurospora</i> VS Ribozyme Provides<br>Insights into RNA–Metal-Ion Interactions. Biochemistry, 2014, 53, 579-590.                                                             | 2.5  | 26        |
| 35 | VGluT2 Expression in Dopamine Neurons Contributes to Postlesional Striatal Reinnervation. Journal of Neuroscience, 2020, 40, 8262-8275.                                                                                                         | 3.6  | 26        |
| 36 | Mutations at the guanosine-binding site of theTetrahymenaribozyme also affect site-specific<br>hydrolysis. Nucleic Acids Research, 1992, 20, 6613-6619.                                                                                         | 14.5 | 24        |

PASCALE LEGAULT

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Role of SLV in SLI substrate recognition by the <i>Neurospora</i> VS ribozyme. Rna, 2008, 14, 736-748.                                                                                                                             | 3.5  | 24        |
| 38 | Structural and functional characterization of interactions involving the Tfb1 subunit of TFIIH and the NER factor Rad2. Nucleic Acids Research, 2012, 40, 5739-5750.                                                               | 14.5 | 24        |
| 39 | Enhanced Binding of RNAP II CTD Phosphatase FCP1 to RAP74 Following CK2 Phosphorylationâ€.<br>Biochemistry, 2005, 44, 2732-2745.                                                                                                   | 2.5  | 22        |
| 40 | TDP-43 stabilizes <i>G3BP1</i> mRNA: relevance to amyotrophic lateral sclerosis/frontotemporal dementia. Brain, 2021, 144, 3461-3476.                                                                                              | 7.6  | 22        |
| 41 | Comparison of the Specificity of Interaction of Cellular and Viral Zinc-Binding Domains with<br>2-Mercaptobenzamide Thioesters. Journal of the American Chemical Society, 2006, 128, 11964-11976.                                  | 13.7 | 21        |
| 42 | Structural Insights Into Substrate Recognition by the <i>Neurospora</i> Varkud Satellite Ribozyme:<br>Importance of U-Turns at the Kissing-Loop Junction. Biochemistry, 2014, 53, 258-269.                                         | 2.5  | 21        |
| 43 | Constitutive Regulatory Activity of an Evolutionarily Excluded Riboswitch Variant. Journal of<br>Biological Chemistry, 2011, 286, 27406-27415.                                                                                     | 3.4  | 20        |
| 44 | NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site. Nucleic Acids Research, 2011, 39, 4427-4437.                                                                         | 14.5 | 20        |
| 45 | Insights into <scp>RNA</scp> structure and dynamics from recent <scp>NMR</scp> and Xâ€ray studies of the <i>Neurospora</i> Varkud satellite ribozyme. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1421.                         | 6.4  | 20        |
| 46 | Solution Structure of the Carboxyl-Terminal Domain of RAP74 and NMR Characterization of the FCP1-Binding Sites of RAP74 and Human TFIIBâ€,‡. Biochemistry, 2003, 42, 1460-1469.                                                    | 2.5  | 19        |
| 47 | The NMR structure of the II–III–VI three-way junction from the <i>Neurospora</i> VS ribozyme reveals<br>a critical tertiary interaction and provides new insights into the global ribozyme structure. Rna, 2015,<br>21, 1621-1632. | 3.5  | 19        |
| 48 | NMR Structure of a Complex Formed by the Carboxyl-Terminal Domain of Human RAP74 and a<br>Phosphorylated Peptide from the Central Domain of the FCP1 Phosphatase. Biochemistry, 2009, 48,<br>1964-1974.                            | 2.5  | 18        |
| 49 | Interactions of the HIV-1 Tat and RAP74 Proteins with the RNA Polymerase II CTD Phosphatase FCP1â€.<br>Biochemistry, 2005, 44, 2716-2731.                                                                                          | 2.5  | 16        |
| 50 | Stepwise assembly of multiple Lin28 proteins on the terminal loop of let-7 miRNA precursors. Nucleic<br>Acids Research, 2014, 42, 4615-4628.                                                                                       | 14.5 | 15        |
| 51 | Biochemical characterization and osmolytes in papillary collecting ducts from pig and dog kidneys.<br>Canadian Journal of Physiology and Pharmacology, 1988, 66, 1282-1290.                                                        | 1.4  | 13        |
| 52 | Structure-Based Design of a Potent Artificial Transactivation Domain Based on p53. Journal of the<br>American Chemical Society, 2012, 134, 1715-1723.                                                                              | 13.7 | 12        |
| 53 | Multivalent binding oligomers inhibit HIV Tat–TAR interaction critical for viral replication.<br>Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6893-6897.                                                                  | 2.2  | 11        |
| 54 | Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture. Nucleic<br>Acids Research, 2012, 40, 2284-2293.                                                                                         | 14.5 | 11        |

PASCALE LEGAULT

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Affinity Purification of RNA Using an ARiBo Tag. Methods in Molecular Biology, 2013, 941, 137-155.                                                                                                                                         | 0.9  | 11        |
| 56 | An integrative NMR-SAXS approach for structural determination of large RNAs defines the<br>substrate-free state of a <i>trans</i> -cleaving <i>Neurospora</i> Varkud Satellite ribozyme. Nucleic<br>Acids Research, 2021, 49, 11959-11973. | 14.5 | 11        |
| 57 | Structural Characterization of a Noncovalent Complex between Ubiquitin and the Transactivation Domain of the Erythroid-Specific Factor EKLF. Structure, 2013, 21, 2014-2024.                                                               | 3.3  | 9         |
| 58 | Rational engineering of the <i>Neurospora</i> VS ribozyme to allow substrate recognition via different kissing-loop interactions. Nucleic Acids Research, 2016, 44, 6924-6934.                                                             | 14.5 | 9         |
| 59 | ARiBo pull-down for riboproteomic studies based on label-free quantitative mass spectrometry. Rna, 2016, 22, 1760-1770.                                                                                                                    | 3.5  | 6         |
| 60 | A multi-axial RNA joint with a large range of motion promotes sampling of an active ribozyme conformation. Nucleic Acids Research, 2019, 47, 3739-3751.                                                                                    | 14.5 | 6         |
| 61 | Letter to the Editor:1H,15N, and13C Resonance Assignment of the 23ÂkDa Organomercurial Lyase MerB in<br>its Free and Mercury-bound Forms. Journal of Biomolecular NMR, 2004, 29, 457-458.                                                  | 2.8  | 5         |
| 62 | Affinity Purification of In Vitro Transcribed RNA with Homogeneous Ends Using a 3′-ARiBo Tag.<br>Methods in Enzymology, 2014, 549, 49-84.                                                                                                  | 1.0  | 5         |
| 63 | Letter to the Editor: 1H, 15N, and 13C resonance assignment of the amino-terminal domain of the Tfb1 subunit of yeast TFIIH. Journal of Biomolecular NMR, 2005, 31, 173-174.                                                               | 2.8  | 4         |
| 64 | Preparation of λN-GST Fusion Protein for Affinity Immobilization of RNA. Methods in Molecular<br>Biology, 2013, 941, 123-135.                                                                                                              | 0.9  | 4         |
| 65 | High-yield production of human Dicer by transfection of human HEK293-EBNA1 cells grown in suspension. BMC Biotechnology, 2018, 18, 76.                                                                                                     | 3.3  | 3         |
| 66 | Preparative Separation of Ribonucleoside Monophosphates by Ion-Pair Reverse-Phase HPLC. Methods in<br>Molecular Biology, 2013, 941, 247-256.                                                                                               | 0.9  | 2         |
| 67 | In Vitro Selection of Varkud Satellite Ribozyme Variants that Cleave a Modified Stem-Loop Substrate.<br>Methods in Molecular Biology, 2021, 2167, 61-77.                                                                                   | 0.9  | 0         |