
Carola U Niesler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8034320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A regenerative approach to the pharmacological management of hard-to-heal wounds. Biochimie, 2022, 196, 131-142.	2.6	9
2	Editorial: Regeneration in Health and Disease. Biochimie, 2022, 196, 121-122.	2.6	0
3	Coâ€culture of proâ€inflammatory macrophages and myofibroblasts: Evaluating morphological phenotypes and screening the effects of signaling pathway inhibitors. Physiological Reports, 2021, 9, e14704.	1.7	4
4	Ex vivo antioxidant preconditioning improves the survival rate of bone marrow stem cells in the presence of wound fluid. Wound Repair and Regeneration, 2020, 28, 506-516.	3.0	5
5	Cellular regenerative therapy for acquired noncongenital musculoskeletal disorders. South African Medical Journal, 2019, 109, 58.	0.6	1
6	Rapid quantification of cellular proliferation and migration using ImageJ. BioTechniques, 2019, 66, 99-102.	1.8	51
7	A triple co-culture method to investigate the effect of macrophages and fibroblasts on myoblast proliferation and migration. BioTechniques, 2018, 64, 52-58.	1.8	25
8	Cellular alignment and fusion: Quantifying the effect of macrophages and fibroblasts on myoblast terminal differentiation. Experimental Cell Research, 2018, 370, 542-550.	2.6	6
9	Analysis and quantification of in vitro myoblast fusion using the LADD Multiple Stain. BioTechniques, 2016, 61, 323-326.	1.8	18
10	Delayed wound healing and dysregulation of IL6/STAT3 signalling in MSCs derived from pre-diabetic obese mice. Molecular and Cellular Endocrinology, 2016, 426, 1-10.	3.2	23
11	The extracellular matrix regulates the effect of decorin and transforming growth factor beta-2 (TGF-β2) on myoblast migration. Biochemical and Biophysical Research Communications, 2016, 479, 351-357.	2.1	21
12	Simultaneous isolation of enriched myoblasts and fibroblasts for migration analysis within a novel co-culture assay. BioTechniques, 2015, 58, 25-32.	1.8	35
13	MMP-14 in skeletal muscle repair. Journal of Muscle Research and Cell Motility, 2015, 36, 215-225.	2.0	38
14	Dose-dependent modulation of myogenesis by HGF: implications for c-Met expression and downstream signalling pathways. Growth Factors, 2015, 33, 229-241.	1.7	26
15	ROCKâ€2 Is Associated With Focal Adhesion Maturation During Myoblast Migration. Journal of Cellular Biochemistry, 2014, 115, 1299-1307.	2.6	27
16	Satellite cell pool expansion is affected by skeletal muscle characteristics. Muscle and Nerve, 2013, 48, 109-116.	2.2	11
17	In vitro myoblast motility models: investigating migration dynamics for the study of skeletal muscle repair. Journal of Muscle Research and Cell Motility, 2013, 34, 333-347.	2.0	32
18	Simple silicone chamber system for in vitro three-dimensional skeletal muscle tissue formation. Frontiers in Physiology, 2013, 4, 349.	2.8	22

CAROLA U NIESLER

#	Article	IF	CITATIONS
19	Satellite cell count, <scp>VO</scp> _{2max} , and <scp>p</scp> 38 <scp>MAPK</scp> in inactive to moderately active young men. Scandinavian Journal of Medicine and Science in Sports, 2012, 22, e38-44.	2.9	19
20	Satellite cell pool size expansion is affected by skeletal muscle characteristics. FASEB Journal, 2012, 26, 730.3.	0.5	0
21	Decorin modulates collagen I-stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts. Matrix Biology, 2011, 30, 109-117.	3.6	18
22	TGF-Î ² isoforms inhibit IGF-1-induced migration and regulate terminal differentiation in a cell-specific manner. Journal of Muscle Research and Cell Motility, 2011, 31, 359-367.	2.0	18
23	Optimization of the scratch assay for in vitro skeletal muscle wound healing analysis. Analytical Biochemistry, 2011, 411, 158-160.	2.4	68
24	VO2Max Correlates With Pax7+ Cell Count in Vastus Lateralis Muscle Of Recreationally Active, Untrained Subjects. Medicine and Science in Sports and Exercise, 2011, 43, 414-415.	0.4	0
25	Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues. Cytotechnology, 2010, 62, 265-277.	1.6	29
26	Potential Myogenic Stem Cell Populations: Sources, Plasticity, and Application for Cardiac Repair. Stem Cells and Development, 2009, 18, 813-830.	2.1	15
27	TGF-β's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner. Experimental Cell Research, 2009, 315, 373-384.	2.6	68
28	The changing AMPK expression profile in differentiating mouse skeletal muscle myoblast cells helps confer increasing resistance to apoptosis. Experimental Physiology, 2007, 92, 207-217.	2.0	51
29	c-Fos immunoreactivity in selected brain regions of rats after heat exposure and pyrogen administration. Brain Research, 2006, 1120, 124-130.	2.2	12
30	Efficient transient genetic labeling of human CD34+progenitor cells forin vivoapplication. Regenerative Medicine, 2006, 1, 223-234.	1.7	7
31	Differential Effects of TNF-alpha on Satellite Cell Differentiation. Medicine and Science in Sports and Exercise, 2006, 38, S281.	0.4	0
32	Long-chain polyunsaturated fatty acids protect the heart against ischemia/reperfusion-induced injury via a MAPK dependent pathway. Journal of Molecular and Cellular Cardiology, 2005, 39, 940-954.	1.9	35
33	p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Research in Cardiology, 2004, 99, 338-50.	5.9	76
34	Old dogmas and new hearts: a role for adult stem cells in cardiac repair?. , 2004, 15, 184-9; discussion 189.		1
35	Specificity in ligand binding and intracellular signalling by insulin and insulin-like growth factor receptors. Biochemical Society Transactions, 2001, 29, 513-525.	3.4	137
36	Adipose depot-specific expression of cIAP2 in human preadipocytes and modulation of expression by serum factors and TNFα. International Journal of Obesity, 2001, 25, 1027-1033.	3.4	17

#	Article	IF	CITATIONS
37	Comparison of anti-apoptotic signalling by the insulin receptor and IGF-I receptor in preadipocytes and adipocytes. Cellular Signalling, 2001, 13, 279-285.	3.6	21
38	TGF-Î ² superfamily cytokines in wound healing. , 2001, , 173-198.		7
39	IGF-I inhibits apoptosis induced by serum withdrawal, but potentiates TNF-alpha-induced apoptosis, in 3T3-L1 preadipocytes. Journal of Endocrinology, 2000, 167, 165-174.	2.6	44
40	Tumor Necrosis Factor-α Induces Apoptosis of Human Adipose Cells. Diabetes, 1997, 46, 1939-1944.	0.6	271