
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8033401/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Unveiling the complex configurational landscape of the intralayer cavities in a crystalline carbon nitride. Chemical Science, 2022, 13, 3187-3193.                                                   | 7.4  | 13        |
| 2  | Monolithic and Single-Crystalline Aluminum–Silicon Heterostructures. ACS Applied Materials &<br>Interfaces, 2022, 14, 26238-26244.                                                                   | 8.0  | 13        |
| 3  | Electrostatic tip effects in scanning probe microscopy of nanostructures. Nanotechnology, 2021, 32, 195710.                                                                                          | 2.6  | 6         |
| 4  | Amino-Deliquescence and Amino-Efflorescence of Methylammonium Lead Iodide. Chemistry of Materials, 2021, 33, 3814-3822.                                                                              | 6.7  | 3         |
| 5  | Lithographically Patterning Hybrid Perovskite Single Crystals by Surface-Engineered<br>Amino-Deliquescence/Efflorescence. ACS Photonics, 2021, 8, 2329-2336.                                         | 6.6  | 4         |
| 6  | Influence of Surface and Structural Variations in Donor–Acceptor–Donor Sensitizers on<br>Photoelectrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 47499-47510.           | 8.0  | 3         |
| 7  | Enabling Aqueous NiO Photocathodes by Passivating Surface Sites That Facilitate Proton-Coupled Charge Transfer. ACS Applied Energy Materials, 2020, 3, 10702-10713.                                  | 5.1  | 10        |
| 8  | Organic Chromophores Designed for Hole Injection into Wide-Band-Gap Metal Oxides for Solar Fuel<br>Applications. Chemistry of Materials, 2020, 32, 8158-8168.                                        | 6.7  | 12        |
| 9  | Remote nongenetic optical modulation of neuronal activity using fuzzy graphene. Proceedings of the<br>National Academy of Sciences of the United States of America, 2020, 117, 13339-13349.          | 7.1  | 52        |
| 10 | Abrupt degenerately-doped silicon nanowire tunnel junctions. Nanotechnology, 2020, 31, 415708.                                                                                                       | 2.6  | 2         |
| 11 | Cation Effects in p-Type Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 1496-1505.                                                                                               | 5.1  | 11        |
| 12 | Ratcheting quasi-ballistic electrons in silicon geometric diodes at room temperature. Science, 2020,<br>368, 177-180.                                                                                | 12.6 | 22        |
| 13 | Semi-transparent, flexible, and electrically conductive silicon mesh by capillarity-driven welding of vapor-liquid-solid-grown nanowires over large areas. Nano Research, 2020, 13, 1465-1471.       | 10.4 | 4         |
| 14 | Observation of Phonon Propagation in Germanium Nanowires Using Femtosecond Pump–Probe<br>Microscopy. ACS Photonics, 2019, 6, 2213-2222.                                                              | 6.6  | 17        |
| 15 | Optical Bound States in the Continuum with Nanowire Geometric Superlattices. Physical Review Letters, 2019, 122, 187402.                                                                             | 7.8  | 37        |
| 16 | Geometric Nanophotonics: Light Management in Single Nanowires through Morphology. Accounts of<br>Chemical Research, 2019, 52, 3511-3520.                                                             | 15.6 | 20        |
| 17 | Interfacial electron transfer yields in dye-sensitized NiO photocathodes correlated to excited-state dipole orientation of ruthenium chromophores. Canadian Journal of Chemistry, 2018, 96, 865-874. | 1.1  | 11        |
|    |                                                                                                                                                                                                      |      |           |

18 Synthesized Silicon Nanostructures for Optical Switches and THz Electronics. , 2018, , .

0

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Solvent-Engineered Stress in Nanoscale Materials. ACS Applied Materials & Interfaces, 2018, 10, 44183-44189.                                                                            | 8.0  | 1         |
| 20 | Interplay of Surface Recombination and Diode Geometry for the Performance of Axial p–i–n Nanowire<br>Solar Cells. ACS Nano, 2018, 12, 10554-10563.                                      | 14.6 | 15        |
| 21 | Mie-coupled bound guided states in nanowire geometric superlattices. Nature Communications, 2018, 9, 2781.                                                                              | 12.8 | 21        |
| 22 | All-in-One Derivatized Tandem p <sup>+</sup> n-Silicon–SnO <sub>2</sub> /TiO <sub>2</sub> Water<br>Splitting Photoelectrochemical Cell. Nano Letters, 2017, 17, 2440-2446.              | 9.1  | 53        |
| 23 | Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping. ACS Nano, 2017, 11, 4453-4462.                                         | 14.6 | 46        |
| 24 | Encoding Highly Nonequilibrium Boron Concentrations and Abrupt Morphology in p-Type/n-Type<br>Silicon Nanowire Superlattices. ACS Applied Materials & Interfaces, 2017, 9, 37105-37111. | 8.0  | 17        |
| 25 | Letting photons out of the gate. Nature Nanotechnology, 2017, 12, 938-939.                                                                                                              | 31.5 | 3         |
| 26 | Mapping Free-Carriers in Multijunction Silicon Nanowires Using Infrared Near-Field Optical<br>Microscopy. Nano Letters, 2017, 17, 6591-6597.                                            | 9.1  | 29        |
| 27 | Probing Intrawire, Interwire, and Diameter-Dependent Variations in Silicon Nanowire Surface Trap<br>Density with Pump–Probe Microscopy. Nano Letters, 2017, 17, 5956-5961.              | 9.1  | 17        |
| 28 | Enhancement of Light Absorption in Silicon Nanowire Photovoltaic Devices with Dielectric and Metallic Grating Structures. Nano Letters, 2017, 17, 7731-7736.                            | 9.1  | 17        |
| 29 | Self-Catalyzed Vapor–Liquid–Solid Growth of Lead Halide Nanowires and Conversion to Hybrid<br>Perovskites. Nano Letters, 2017, 17, 7561-7568.                                           | 9.1  | 37        |
| 30 | (Invited) Designing Symmetric and Asymmetric Morphology in Silicon Nanowires to Encode Advanced<br>Electronic and Photonic Functionality. ECS Meeting Abstracts, 2017, , .              | 0.0  | 0         |
| 31 | Designing Plasmonâ€Enhanced Thermochromic Films Using a Vanadium Dioxide Nanoparticle Elastomeric<br>Composite. Advanced Optical Materials, 2016, 4, 578-583.                           | 7.3  | 26        |
| 32 | Material informatics driven design and experimental validation of lead titanate as an aqueous solar<br>photocathode. Materials Discovery, 2016, 6, 9-16.                                | 3.3  | 23        |
| 33 | Barrierless Switching between a Liquid and Superheated Solid Catalyst during Nanowire Growth.<br>Journal of Physical Chemistry Letters, 2016, 7, 4236-4242.                             | 4.6  | 7         |
| 34 | Capillarity-Driven Welding of Semiconductor Nanowires for Crystalline and Electrically Ohmic<br>Junctions. Nano Letters, 2016, 16, 5241-5246.                                           | 9.1  | 36        |
| 35 | Passivation of Nickel Vacancy Defects in Nickel Oxide Solar Cells by Targeted Atomic Deposition of<br>Boron. Journal of Physical Chemistry C, 2016, 120, 16568-16576.                   | 3.1  | 44        |
| 36 | Imaging Spatial Variations in the Dissipation and Transport of Thermal Energy within Individual Silicon Nanowires Using Ultrafast Microscopy. Nano Letters, 2016, 16, 434-439.          | 9.1  | 11        |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition. ACS<br>Applied Materials & Interfaces, 2016, 8, 4754-4761.                                                                             | 8.0  | 71        |
| 38 | Chemically Engraving Semiconductor Nanowires: Using Three-Dimensional Nanoscale Morphology to Encode Functionality from the Bottom Up. Journal of Physical Chemistry Letters, 2016, 7, 685-692.                                        | 4.6  | 28        |
| 39 | Understanding the vapor–liquid–solid mechanism of Si nanowire growth and doping to synthetically<br>encode precise nanoscale morphology. Journal of Materials Chemistry C, 2016, 4, 3890-3897.                                         | 5.5  | 32        |
| 40 | Doubling Absorption in Nanowire Solar Cells with Dielectric Shell Optical Antennas. Nano Letters, 2015, 15, 753-758.                                                                                                                   | 9.1  | 109       |
| 41 | Compositionally-tunable mechanochemical synthesis of<br>Zn <sub>x</sub> Co <sub>3â°x</sub> O <sub>4</sub> nanoparticles for mesoporous p-type<br>photocathodes. Journal of Materials Chemistry A, 2015, 3, 21990-21994.                | 10.3 | 14        |
| 42 | Sensitized Zinc–Cobalt–Oxide Spinel p-Type Photoelectrode. Journal of Physical Chemistry C, 2014, 118, 25340-25349.                                                                                                                    | 3.1  | 16        |
| 43 | Reversible Strain-Induced Electron–Hole Recombination in Silicon Nanowires Observed with<br>Femtosecond Pump–Probe Microscopy. Nano Letters, 2014, 14, 6287-6292.                                                                      | 9.1  | 34        |
| 44 | Direct Observation of Metal Ketenes Formed by Photoexcitation of a Fischer Carbene using Ultrafast<br>Infrared Spectroscopy. Organometallics, 2014, 33, 6149-6153.                                                                     | 2.3  | 10        |
| 45 | Encoding Abrupt and Uniform Dopant Profiles in Vapor–Liquid–Solid Nanowires by Suppressing the<br>Reservoir Effect of the Liquid Catalyst. ACS Nano, 2014, 8, 11790-11798.                                                             | 14.6 | 46        |
| 46 | Ultrafast Carrier Dynamics in Individual Silicon Nanowires: Characterization of Diameter-Dependent<br>Carrier Lifetime and Surface Recombination with Pump–Probe Microscopy. Journal of Physical<br>Chemistry C, 2014, 118, 8634-8640. | 3.1  | 50        |
| 47 | Waveguide Scattering Microscopy for Dark-Field Imaging and Spectroscopy of Photonic Nanostructures. ACS Photonics, 2014, 1, 725-731.                                                                                                   | 6.6  | 22        |
| 48 | Identifying Crystallization- and Incorporation-Limited Regimes during Vapor–Liquid–Solid Growth of<br>Si Nanowires. ACS Nano, 2014, 8, 6081-6088.                                                                                      | 14.6 | 38        |
| 49 | Hierarchically-Structured NiO Nanoplatelets as Mesoscale p-Type Photocathodes for Dye-Sensitized<br>Solar Cells. Journal of Physical Chemistry C, 2014, 118, 14177-14184.                                                              | 3.1  | 49        |
| 50 | Imaging Charge Separation and Carrier Recombination in Nanowire p-i-n Junctions Using Ultrafast<br>Microscopy. Nano Letters, 2014, 14, 3079-3087.                                                                                      | 9.1  | 48        |
| 51 | Ultrafast Carrier Dynamics of Silicon Nanowire Ensembles: The Impact of Geometrical Heterogeneity<br>on Charge Carrier Lifetime. Journal of Physical Chemistry C, 2014, 118, 8626-8633.                                                | 3.1  | 18        |
| 52 | Synthetically Encoding 10 nm Morphology in Silicon Nanowires. Nano Letters, 2013, 13, 6281-6286.                                                                                                                                       | 9.1  | 87        |
| 53 | Direct Imaging of Free Carrier and Trap Carrier Motion in Silicon Nanowires by Spatially-Separated<br>Femtosecond Pump–Probe Microscopy. Nano Letters, 2013, 13, 1336-1340.                                                            | 9.1  | 120       |
| 54 | Horizontal Silicon Nanowires with Radial p–n Junctions: A Platform for Unconventional Solar Cells.<br>Journal of Physical Chemistry Letters, 2013, 4, 2002-2009.                                                                       | 4.6  | 41        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Design Principles for Photovoltaic Devices Based on Si Nanowires with Axial or Radial p–n Junctions.<br>Nano Letters, 2012, 12, 6024-6029.                                                                                            | 9.1  | 119       |
| 56 | Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1407-1412. | 7.1  | 238       |
| 57 | Tuning Light Absorption in Core/Shell Silicon Nanowire Photovoltaic Devices through<br>Morphological Design. Nano Letters, 2012, 12, 4971-4976.                                                                                       | 9.1  | 237       |
| 58 | Synthetically Encoded Ultrashort-Channel Nanowire Transistors for Fast, Pointlike Cellular Signal<br>Detection. Nano Letters, 2012, 12, 2639-2644.                                                                                    | 9.1  | 82        |
| 59 | Time-resolved IR Studies on the Mechanism for the Functionalization of Primary Câ^'H Bonds by<br>Photoactivated Cp*W(CO) <sub>3</sub> (Bpin). Journal of the American Chemical Society, 2010, 132,<br>1848-1859.                      | 13.7 | 41        |
| 60 | DFT and time-resolved IR investigation of electron transfer between photogenerated 17- and 19-electron organometallic radicals. Journal of Molecular Structure, 2008, 890, 328-338.                                                   | 3.6  | 10        |
| 61 | Determining Transition-State Geometries in Liquids Using 2D-IR. Science, 2008, 319, 1820-1823.                                                                                                                                        | 12.6 | 154       |
| 62 | Direct Observation of Photoinduced Bent Nitrosyl Excited-State Complexes. Journal of Physical Chemistry A, 2008, 112, 8505-8514.                                                                                                      | 2.5  | 18        |
| 63 | Mechanism for Iron-Catalyzed Alkene Isomerization in Solution. Organometallics, 2008, 27, 4370-4379.                                                                                                                                  | 2.3  | 44        |
| 64 | 19-Electron Intermediates in the Ligand Substitution of CpW(CO)3•with a Lewis Base. Journal of the<br>American Chemical Society, 2006, 128, 3152-3153.                                                                                | 13.7 | 19        |
| 65 | 19-Electron Intermediates and Cage-Effects in the Photochemical Disproportionation of [CpW(CO)3]2 with Lewis Bases. Journal of the American Chemical Society, 2005, 127, 12555-12565.                                                 | 13.7 | 26        |
| 66 | The Role of Odd-Electron Intermediates and In-Cage Electron Transfer in Ultrafast Photochemical<br>Disproportionation Reactions in Lewis Bases. Journal of the American Chemical Society, 2004, 126,<br>11414-11415.                  | 13.7 | 19        |