Jim C Spain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8032928/publications.pdf

Version: 2024-02-01

35 papers	962 citations	15 h-index	434195 31 g-index
35 all docs	35 docs citations	35 times ranked	1096 citing authors

#	Article	IF	CITATIONS
1	Molecular Characterization and Substrate Specificity of Nitrobenzene Dioxygenase from Comamonas sp. Strain JS765. Applied and Environmental Microbiology, 2002, 68, 634-641.	3.1	140
2	Origins of the 2,4-Dinitrotoluene Pathway. Journal of Bacteriology, 2002, 184, 4219-4232.	2.2	94
3	Identifying Competing Aerobic Nitrobenzene Biodegradation Pathways by Compound-Specific Isotope Analysis. Environmental Science & Technology, 2008, 42, 4764-4770.	10.0	74
4	Microbial Community Degradation of Widely Used Quaternary Ammonium Disinfectants. Applied and Environmental Microbiology, 2014, 80, 5892-5900.	3.1	60
5	Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem. Applied and Environmental Microbiology, 2017, 83, .	3.1	60
6	Aerobic Biodegradation of 2,4-Dinitroanisole by Nocardioides sp. Strain JS1661. Applied and Environmental Microbiology, 2014, 80, 7725-7731.	3.1	50
7	Using Compound-Specific Isotope Analysis to Assess Biodegradation of Nitroaromatic Explosives in the Subsurface. Environmental Science & Environmental	10.0	46
8	" <i>Candidatus</i> Macondimonas diazotrophicaâ€, a novel gammaproteobacterial genus dominating crude-oil-contaminated coastal sediments. ISME Journal, 2019, 13, 2129-2134.	9.8	46
9	Comparative genomic analysis of isoproturonâ€mineralizing sphingomonads reveals the isoproturon catabolic mechanism. Environmental Microbiology, 2016, 18, 4888-4906.	3.8	39
10	Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: an extradiol dioxygenase from the 2,4-dinitrotoluene pathway. Archives of Microbiology, 2000, 173, 86-90.	2.2	36
11	The Combined Structural and Kinetic Characterization of a Bacterial Nitronate Monooxygenase from Pseudomonas aeruginosa PAO1 Establishes NMO Class I and II. Journal of Biological Chemistry, 2014, 289, 23764-23775.	3.4	32
12	Biodegradation of 2,4-dinitroanisole (DNAN) by Nocardioides sp. JS1661 in water, soil and bioreactors. Journal of Hazardous Materials, 2016, 312, 37-44.	12.4	29
13	Isotope Fractionation Associated with the Biodegradation of 2- and 4-Nitrophenols via Monooxygenation Pathways. Environmental Science & Environmental Science & 2013, 47, 14185-14193.	10.0	26
14	Modeling Aerobic Biodegradation in the Capillary Fringe. Environmental Science & Environmental Science	10.0	25
15	Microbial Enrichment Culture Responsible for the Complete Oxidative Biodegradation of 3-Amino-1,2,4-triazol-5-one (ATO), the Reduced Daughter Product of the Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). Environmental Science & Enp; Technology, 2019, 53, 12648-12656.	10.0	18
16	Aerobic biodegradation of 2,3- and 3,4-dichloronitrobenzene. Journal of Hazardous Materials, 2019, 378, 120717.	12.4	17
17	Biodegradation of the Allelopathic Chemical Pterostilbene by a Sphingobium sp. Strain from the Peanut Rhizosphere. Applied and Environmental Microbiology, 2019, 85, .	3.1	13
18	Enzymatic hydrolysis by transition-metal-dependent nucleophilic aromatic substitution. Nature Chemical Biology, 2016, 12, 1031-1036.	8.0	12

#	Article	IF	Citations
19	Resveratrol as a Growth Substrate for Bacteria from the Rhizosphere. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
20	Different Mechanisms of Alkaline and Enzymatic Hydrolysis of the Insensitive Munition Component 2,4-Dinitroanisole Lead to Identical Products. Environmental Science and Technology Letters, 2018, 5, 456-461.	8.7	12
21	Bacteria Make a Living Breathing the Nitroheterocyclic Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). Environmental Science & Echnology, 2021, 55, 5806-5814.	10.0	12
22	A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in <i>Diaphorobacter</i> sp. Strain JS3051. MBio, 2021, 12, e0223121.	4.1	12
23	Iron-Dependent Enzyme Catalyzes the Initial Step in Biodegradation of $\langle i \rangle N \langle i \rangle$ -Nitroglycine by Variovorax sp. Strain JS1663. Applied and Environmental Microbiology, 2017, 83, .	3.1	11
24	Integrated Omics Elucidate the Mechanisms Driving the Rapid Biodegradation of Deepwater Horizon Oil in Intertidal Sediments Undergoing Oxic–Anoxic Cycles. Environmental Science & Technology, 2020, 54, 10088-10099.	10.0	11
25	Natural Attenuation of Nonvolatile Contaminants in the Capillary Fringe. Environmental Science & Environmental Science	10.0	10
26	Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN). Environmental Science & Eamp; Technology, 2016, 50, 11193-11199.	10.0	10
27	A Nagâ€like dioxygenase initiates 3,4â€dichloronitrobenzene degradation via 4,5â€dichlorocatechol in <i>Diaphorobacter</i> sp. strain <scp>JS3050</scp> . Environmental Microbiology, 2021, 23, 1053-1065.	3.8	10
28	Pseudomonas aeruginosa LysR PA4203 Regulator NmoR Acts as a Repressor of the PA4202 <i>nmoA</i> Gene, Encoding a Nitronate Monooxygenase. Journal of Bacteriology, 2015, 197, 1026-1039.	2.2	9
29	A novel, divergent alkane monooxygenase (<scp><i>alkB</i></scp>) clade involved in crude oil biodegradation. Environmental Microbiology Reports, 2021, 13, 830-840.	2.4	9
30	Branched pathways in the degradation of cDCE by cytochrome P450 in Polaromonas sp. JS666. Science of the Total Environment, 2017, 605-606, 99-105.	8.0	8
31	Designing bacterial consortia for the complete biodegradation of insensitive munitions compounds in waste streams. Biotechnology and Bioengineering, 2022, 119, 2437-2446.	3.3	7
32	Quinone Moieties Link the Microbial Respiration of Natural Organic Matter to the Chemical Reduction of Diverse Nitroaromatic Compounds. Environmental Science & Environmental Science & 2022, 56, 9387-9397.	10.0	7
33	Biodegradation of 3-Chloronitrobenzene and 3-Bromonitrobenzene by <i>Diaphorobacter</i> sp. Strain JS3051. Applied and Environmental Microbiology, 2022, 88, e0243721.	3.1	3
34	Liquid-Phase Biochemical Sensing with Disk-Type Resonant Microsensor. , 2007, , .		2
35	Continuous-Flow Applications of Silica-Encapsulated Enzymes. ACS Symposium Series, 2008, , 243-253.	0.5	0