Stefano Ricagno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteaseâ€sensitive regions in amyloid light chains: what a common pattern of fragmentation across organs suggests about aggregation. FEBS Journal, 2022, 289, 494-506.	4.7	25
2	Cu(II) Binding Increases the Soluble Toxicity of Amyloidogenic Light Chains. International Journal of Molecular Sciences, 2022, 23, 950.	4.1	1
3	<scp>l</scp> - to <scp>d</scp> -Amino Acid Substitution in the Immunodominant LCMV-Derived Epitope gp33 Highlights the Sensitivity of the TCR Recognition Mechanism for the MHC/Peptide Structure and Dynamics. ACS Omega, 2022, 7, 9622-9635.	3.5	1
4	An N-glycosylation hotspot in immunoglobulin \hat{I}^{ϱ} light chains is associated with AL amyloidosis. Leukemia, 2022, 36, 2076-2085.	7.2	10
5	Multi- <i>e</i> GO: An in silico lens to look into protein aggregation kinetics at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
6	Neuroserpin: structure, function, physiology and pathology. Cellular and Molecular Life Sciences, 2021, 78, 6409-6430.	5.4	16
7	β2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression. Immunity, 2021, 54, 1772-1787.e9.	14.3	49
8	Biochemical and biophysical comparison of human and mouse betaâ€⊋ microglobulin reveals the molecular determinants of low amyloid propensity. FEBS Journal, 2020, 287, 546-560.	4.7	11
9	Inherent Biophysical Properties Modulate the Toxicity of Soluble Amyloidogenic Light Chains. Journal of Molecular Biology, 2020, 432, 845-860.	4.2	26
10	Embelin as Lead Compound for New Neuroserpin Polymerization Inhibitors. Life, 2020, 10, 111.	2.4	10
11	Two novel fish paralogs provide insights into the Rid family of imine deaminases active in pre-empting enamine/imine metabolic damage. Scientific Reports, 2020, 10, 10135.	3.3	4
12	Conformational Stability and Dynamics in Crystals Recapitulate Protein Behavior in Solution. Biophysical Journal, 2020, 119, 978-988.	0.5	3
13	Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis. Journal of Biological Chemistry, 2020, 295, 16572-16584.	3.4	32
14	Glycosylation Tunes Neuroserpin Physiological and Pathological Properties. International Journal of Molecular Sciences, 2020, 21, 3235.	4.1	11
15	Modulating the cardiotoxic behaviour of immunoglobulin light chain dimers through point mutations. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 105-106.	3.0	4
16	The concurrency of several biophysical traits links immunoglobulin light chains with toxicity in AL amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 107-108.	3.0	2
17	Investigating the Molecular Basis of the Aggregation Propensity of the Pathological D76N Mutant of Beta-2 Microglobulin: Role of the Denatured State. International Journal of Molecular Sciences, 2019, 20, 396.	4.1	5
18	Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain AL amyloidosis patient. Nature Communications, 2019, 10, 1269.	12.8	113

STEFANO RICAGNO

#	Article	IF	CITATIONS
19	Conformational dynamics in crystals reveal the molecular bases for D76N beta-2 microglobulin aggregation propensity. Nature Communications, 2018, 9, 1658.	12.8	53
20	An Asp to Asn mutation is a toxic trigger in beta-2 microglobulin: structure and biophysics. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 15-16.	3.0	2
21	Concurrent structural and biophysical traits link with immunoglobulin light chains amyloid propensity. Scientific Reports, 2017, 7, 16809.	3.3	50
22	FRET studies of various conformational states adopted by transthyretin. Cellular and Molecular Life Sciences, 2017, 74, 3577-3598.	5.4	7
23	Embelin binds to human neuroserpin and impairs its polymerisation. Scientific Reports, 2016, 6, 18769.	3.3	13
24	Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability. Scientific Reports, 2016, 6, 25559.	3.3	47
25	Tools for the rational design of bivalent microtubule-targeting drugs. Biochemical and Biophysical Research Communications, 2016, 479, 48-53.	2.1	10
26	Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant. Scientific Reports, 2016, 6, 33463.	3.3	12
27	A covalent homodimer probing early oligomers along amyloid aggregation. Scientific Reports, 2015, 5, 14651.	3.3	13
28	Wild Type Beta-2 Microglobulin and DE Loop Mutants Display a Common Fibrillar Architecture. PLoS ONE, 2015, 10, e0122449.	2.5	14
29	Decoding the Structural Bases of D76N ß2-Microglobulin High Amyloidogenicity through Crystallography and Asn-Scan Mutagenesis. PLoS ONE, 2015, 10, e0144061.	2.5	22
30	Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and Molecular Dynamics. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 110-117.	2.3	13
31	Class I Major Histocompatibility Complex, the Trojan Horse for Secretion of Amyloidogenic β2-Microglobulin. Journal of Biological Chemistry, 2014, 289, 3318-3327.	3.4	22
32	Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning. Journal of the American Chemical Society, 2014, 136, 12489-12497.	13.7	254
33	Edge strand engineering prevents nativeâ€like aggregation in <i><scp>S</scp>ulfolobusÂsolfataricus</i> acylphosphatase. FEBS Journal, 2014, 281, 4072-4084.	4.7	13
34	Hereditary Systemic Amyloidosis Due to Asp76Asn Variant β ₂ -Microglobulin. New England Journal of Medicine, 2012, 366, 2276-2283.	27.0	172
35	Structure, Stability, and Aggregation of β-2 Microglobulin Mutants: Insights from a Fourier Transform Infrared Study in Solution and in the Crystalline State. Biophysical Journal, 2012, 102, 1676-1684. 	0.5	31
36	On the molecular structure of human neuroserpin polymers. Proteins: Structure, Function and Bioinformatics, 2012, 80, 8-13.	2.6	21

STEFANO RICAGNO

#	Article	IF	CITATIONS
37	A recurrent Dâ€strand association interface is observed in βâ€2 microglobulin oligomers. FEBS Journal, 2012, 279, 1131-1143.	4.7	18
38	The Tempered Polymerization of Human Neuroserpin. PLoS ONE, 2012, 7, e32444.	2.5	28
39	Dâ€strand perturbation and amyloid propensity in betaâ€⊋ microglobulin. FEBS Journal, 2011, 278, 2349-2358.	4.7	13
40	The two tryptophans of β2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure. BMC Evolutionary Biology, 2011, 11, 159.	3.2	16
41	Characterization of β2â€microglobulin conformational intermediates associated to different fibrillation conditions. Journal of Mass Spectrometry, 2011, 46, 734-741.	1.6	13
42	The effects of an ideal β-turn on β-2 microglobulin fold stability. Journal of Biochemistry, 2011, 150, 39-47.	1.7	9
43	DEâ€loop mutations affect β2 microglobulin stability, oligomerization, and the lowâ€pH unfolded form. Protein Science, 2010, 19, 1386-1394.	7.6	43
44	Molecular bases of neuroserpin function and pathology. Biomolecular Concepts, 2010, 1, 117-130.	2.2	9
45	Two Latent and Two Hyperstable Polymeric Forms of Human Neuroserpin. Biophysical Journal, 2010, 99, 3402-3411.	0.5	20
46	Fibrillar vs Crystalline Full-Length β-2-Microglobulin Studied by High-Resolution Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 5556-5557.	13.7	32
47	Human beta-2 microglobulin W60V mutant structure: Implications for stability and amyloid aggregation. Biochemical and Biophysical Research Communications, 2009, 380, 543-547.	2.1	29
48	Recognition of RNA Cap in the Wesselsbron Virus NS5 Methyltransferase Domain: Implications for RNA-Capping Mechanisms in Flavivirus. Journal of Molecular Biology, 2009, 385, 140-152.	4.2	78
49	Human Neuroserpin: Structure and Time-Dependent Inhibition. Journal of Molecular Biology, 2009, 388, 109-121.	4.2	41
50	CtBP1/BARS Gly172 → Glu mutant structure: Impairing NAD(H)-binding and dimerization. Biochemical and Biophysical Research Communications, 2009, 381, 70-74.	2.1	21
51	The Controlling Roles of Trp60 and Trp95 in β2-Microglobulin Function, Folding and Amyloid Aggregation Properties. Journal of Molecular Biology, 2008, 378, 887-897.	4.2	82
52	DE loop mutations affect β2-microglobulin stability and amyloid aggregation. Biochemical and Biophysical Research Communications, 2008, 377, 146-150.	2.1	36
53	De Novo Initiation of RNA Synthesis by the Arterivirus RNA-Dependent RNA Polymerase. Journal of Virology, 2007, 81, 8384-8395.	3.4	60
54	The crystal structure of FdxA, a 7Fe ferredoxin from Mycobacterium smegmatis. Biochemical and Biophysical Research Communications, 2007, 360, 97-102.	2.1	16

STEFANO RICAGNO

#	Article	IF	CITATIONS
55	Crystallization and preliminary X-ray diffraction analysis of Nsp15 from SARS coronavirus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 409-411.	0.7	10
56	Detection and characterization of merohedral twinning in crystals of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 122-128.	2.3	3
57	Crystal Structure of the Receptor-Binding Protein Head Domain from Lactococcus lactis Phage blL170. Journal of Virology, 2006, 80, 9331-9335.	3.4	62
58	Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11892-11897.	7.1	161
59	The enzymes of oxalate metabolism: unexpected structures and mechanisms. Archives of Biochemistry and Biophysics, 2005, 433, 176-192.	3.0	141
60	Kinetic and Mechanistic Characterization of the Formyl-CoA Transferase from Oxalobacter formigenes. Journal of Biological Chemistry, 2004, 279, 36003-36012.	3.4	51
61	Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase from Zymomonas mobilis at 1.9-Ã resolution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1698, 37-44.	2.3	34
62	Formyl-CoA transferase encloses the CoA binding site at the interface of an interlocked dimer. EMBO Journal, 2003, 22, 3210-3219.	7.8	45
63	Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase fromEnterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. FEBS Journal, 2003, 270, 2312-2321.	0.2	65
64	Crystallization and preliminary crystallographic analysis of formyl-CoA tranferase fromOxalobacter formigenes. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1276-1277.	2.5	4
65	Crystal Structure of the Productive Ternary Complex of Dihydropyrimidine Dehydrogenase with NADPH and 5-lodouracil. Journal of Biological Chemistry, 2002, 277, 13155-13166.	3.4	51
66	DcE2F, a Functional Plant E2F-like Transcriptional Activator from Daucus carota. Journal of Biological Chemistry, 2000, 275, 19258-19267.	3.4	58