List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8032651/publications.pdf Version: 2024-02-01

	38742	46799
11,394	50	89
citations	h-index	g-index
010	010	7015
313	313	/915
docs citations	times ranked	citing authors
	11,394 citations 313 docs citations	11,39450citationsh-index313313docs citations313times ranked

ΙΔΝΙ ΤΥΤΟΔΤ

#	Article	lF	CITATIONS
1	Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron, 1992, 9, 861-871.	8.1	1,063
2	Scorpion toxins specific for Na ⁺ hannels. FEBS Journal, 1999, 264, 287-300.	0.2	597
3	A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends in Pharmacological Sciences, 1999, 20, 444-447.	8.7	361
4	Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resources, Conservation and Recycling, 2010, 54, 229-234.	10.8	278
5	An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon, 2002, 40, 1239-1258.	1.6	250
6	Neurotoxins and Their Binding Areas on Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 2011, 2, 71.	3.5	215
7	Functional Heteromerization of HCN1 and HCN2 Pacemaker Channels. Journal of Biological Chemistry, 2001, 276, 6069-6072.	3.4	188
8	Voltage-gated sodium channel modulation by scorpion α-toxins. Toxicon, 2007, 49, 142-158.	1.6	159
9	Antibacterial and antifungal properties of α-helical, cationic peptides in the venom of scorpions from southern Africa. FEBS Journal, 2002, 269, 4799-4810.	0.2	157
10	Evidence for cooperative interactions in potassium channel gating. Nature, 1992, 359, 420-423.	27.8	142
11	Four Novel Tarantula Toxins as Selective Modulators of Voltage-Gated Sodium Channel Subtypes. Molecular Pharmacology, 2006, 69, 419-429.	2.3	141
12	Evolutionary origin of inhibitor cystine knot peptides. FASEB Journal, 2003, 17, 1765-1767.	0.5	140
13	Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview. Marine Drugs, 2014, 12, 2970-3004.	4.6	137
14	Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nature Communications, 2017, 8, 14733.	12.8	136
15	κ-Hefutoxin1, a Novel Toxin from the ScorpionHeterometrus fulvipes with Unique Structure and Function. Journal of Biological Chemistry, 2002, 277, 30040-30047.	3.4	130
16	The differential preference of scorpion α-toxins for insect or mammalian sodium channels: Implications for improved insect control. Toxicon, 2007, 49, 452-472.	1.6	109
17	Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. International Journal of Molecular Sciences, 2020, 21, 5064.	4.1	103
18	Adaptive Evolution of Scorpion Sodium Channel Toxins. Journal of Molecular Evolution, 2004, 58, 145-153.	1.8	95

#	Article	IF	CITATIONS
19	A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. Biochemical Pharmacology, 2011, 82, 81-90.	4.4	93
20	Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels. Toxicon, 2007, 49, 550-560.	1.6	90
21	Multisite Binding of a General Anesthetic to the Prokaryotic Pentameric Erwinia chrysanthemi Ligand-gated Ion Channel (ELIC). Journal of Biological Chemistry, 2013, 288, 8355-8364.	3.4	90
22	Cytolytic and K+ channel blocking activities of β-KTx and scorpine-like peptides purified from scorpion venoms. Cellular and Molecular Life Sciences, 2008, 65, 187-200.	5.4	88
23	Expression of Human plCln and ClC-6 in Xenopus Oocytes Induces an Identical Endogenous Chloride Conductance. Journal of Biological Chemistry, 1997, 272, 3615-3621.	3.4	84
24	Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels. Toxicon, 2008, 51, 974-983.	1.6	83
25	Potent Modulation of the Voltage-Gated Sodium Channel Nav1.7 by OD1, a Toxin from the Scorpion Odonthobuthus doriae. Molecular Pharmacology, 2006, 70, 405-414.	2.3	82
26	Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana 1. FEBS Letters, 2003, 555, 616-622.	2.8	75
27	Animal Peptides Targeting Voltage-Activated Sodium Channels. Current Pharmaceutical Design, 2008, 14, 2492-2502.	1.9	74
28	An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis. Biochemical Journal, 2005, 388, 263-271.	3.7	73
29	Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Letters, 2006, 580, 5728-5732.	2.8	72
30	A natural point mutation changes both target selectivity and mechanism of action of sea anemone toxins. FASEB Journal, 2012, 26, 5141-5151.	0.5	72
31	A Novel Conotoxin from Conus betulinus, κ-BtX, Unique in Cysteine Pattern and in Function as a Specific BK Channel Modulator. Journal of Biological Chemistry, 2003, 278, 12624-12633.	3.4	71
32	Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clinical Epigenetics, 2020, 12, 65.	4.1	66
33	Jingzhaotoxin-I, a Novel Spider Neurotoxin Preferentially Inhibiting Cardiac Sodium Channel Inactivation. Journal of Biological Chemistry, 2005, 280, 12069-12076.	3.4	63
34	Experimental Conversion of a Defensin into a Neurotoxin: Implications for Origin of Toxic Function. Molecular Biology and Evolution, 2014, 31, 546-559.	8.9	62
35	The α-Dendrotoxin Footprint on a Mammalian Potassium Channel. Journal of Biological Chemistry, 1995, 270, 24776-24781.	3.4	61
36	Crotamine Pharmacology Revisited: Novel Insights Based on the Inhibition of K _V Channels. Molecular Pharmacology, 2012, 82, 90-96.	2.3	59

#	Article	IF	CITATIONS
37	Molecular diversity of the telson and venom components from <i>Pandinus cavimanus</i> (<i>Scorpionidae</i> Latreille 1802): Transcriptome, venomics and function. Proteomics, 2012, 12, 313-328.	2.2	59
38	Two new scorpion toxins that target voltage-gated Ca2+ and Na+ channels. Biochemical and Biophysical Research Communications, 2002, 299, 562-568.	2.1	57
39	The evaluation of the applicability of a high pH mobile phase in ultrahigh performance liquid chromatography tandem mass spectrometry analysis of benzodiazepines and benzodiazepine-like hypnotics in urine and blood. Journal of Chromatography A, 2012, 1249, 147-154.	3.7	57
40	A novel conotoxin inhibiting vertebrate voltage-sensitive potassium channels. Toxicon, 2003, 42, 43-52.	1.6	56
41	Molecular Diversity and Functional Evolution of Scorpion Potassium Channel Toxins. Molecular and Cellular Proteomics, 2011, 10, S1-S11.	3.8	56
42	A novel µ onopeptide, CnIIIC, exerts potent and preferential inhibition of Na _V 1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors. British Journal of Pharmacology, 2012, 166, 1654-1668.	5.4	55
43	A novel sea anemone peptide that inhibits acid-sensing ion channels. Peptides, 2014, 53, 3-12.	2.4	54
44	Development and validation of a fast ionic liquid-based dispersive liquid–liquid microextraction procedure combined with LC–MS/MS analysis for the quantification of benzodiazepines and benzodiazepine-like hypnotics in whole blood. Forensic Science International, 2017, 274, 44-54.	2.2	54
45	Flunarizine inhibits a high-threshold inactivating calcium channel (N-type) in isolated hippocampal neurons. Brain Research, 1991, 549, 112-117.	2.2	53
46	Evolutionary Diversification of Mesobuthus α-Scorpion Toxins Affecting Sodium Channels. Molecular and Cellular Proteomics, 2012, 11, M111.012054.	3.8	53
47	Importance of the Conserved Aromatic Residues in the Scorpion α-Like Toxin BmK M1. Journal of Biological Chemistry, 2003, 278, 24125-24131.	3.4	52
48	OD1, the first toxin isolated from the venom of the scorpionOdonthobuthus doriaeactive on voltage-gated Na+channels. FEBS Letters, 2005, 579, 4181-4186.	2.8	52
49	A polyether biotoxin binding site on the lipid-exposed face of the pore domain of Kv channels revealed by the marine toxin gambierol. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9896-9901.	7.1	52
50	TRPV1 as a key determinant in ciguatera and neurotoxic shellfish poisoning. Biochemical and Biophysical Research Communications, 2007, 361, 214-217.	2.1	50
51	MeuTXKβ1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 872-883.	2.3	49
52	BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K+ and HERG currents. Biochemical Journal, 2004, 378, 745-752.	3.7	48
53	Preparation of longitudinal sections of hair samples for the analysis of cocaine by MALDIâ€MS/MS and TOF‧IMS imaging. Drug Testing and Analysis, 2015, 7, 859-865.	2.6	48
54	Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor. Marine Drugs, 2016, 14, 229.	4.6	48

#	Article	IF	CITATIONS
55	The Birth and Death of Toxins with Distinct Functions: A Case Study in the Sea Anemone Nematostella. Molecular Biology and Evolution, 2019, 36, 2001-2012.	8.9	48
56	Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels. Biochemical Journal, 2003, 375, 551-560.	3.7	46
57	Crystal Structures of a Cysteine-modified Mutant in Loop D of Acetylcholine-binding Protein. Journal of Biological Chemistry, 2011, 286, 4420-4428.	3.4	46
58	Fast and easy extraction of antidepressants from whole blood using ionic liquids as extraction solvent. Talanta, 2018, 180, 292-299.	5.5	46
59	Morphine-614-glucuronide and morphine-3-glucuronide, opioid receptor agonists with different potencies11Abbreviations: M3G, morphine-3-glucuronide; M6G, morphine-612-glucuronide; MOR, 14-opioid receptor; KOR, 12-opioid receptor; DOR, 17-opioid receptor; GIRK channel, G-protein coupled inwardly rectifying K+ channel; RGS, regulator of G-protein signaling; GAP, GTPase-activating protein; TM,	4.4	45
60	Consequences of Decontamination Procedures in Forensic Hair Analysis Using Metal-Assisted Secondary Ion Mass Spectrometry Analysis. Analytical Chemistry, 2016, 88, 3091-3097.	6.5	45
61	Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1. Journal of Biological Chemistry, 2015, 290, 12195-12209.	3.4	44
62	The sea anemoneBunodosoma granuliferacontains surprisingly efficacious and potent insect-selective toxins. FEBS Letters, 2002, 532, 131-134.	2.8	42
63	Toxins in Drug Discovery and Pharmacology. Toxins, 2018, 10, 126.	3.4	42
64	Determination of species-specific components in the venom ofParabuthusscorpions from southern Africa using matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 768-773.	1.5	41
65	Turret and pore block of K+ channels: what is the difference?. Trends in Pharmacological Sciences, 2003, 24, 446-448.	8.7	40
66	The use of presumptive color tests for new psychoactive substances. Drug Testing and Analysis, 2016, 8, 136-140.	2.6	40
67	Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels. British Journal of Pharmacology, 2000, 129, 791-801.	5.4	39
68	Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function. Cellular and Molecular Life Sciences, 2010, 67, 2799-2813.	5.4	39
69	Investigation of the relationship between the structure and function of Ts2, a neurotoxin from <i>Tityus serrulatus</i> venom. FEBS Journal, 2012, 279, 1495-1504.	4.7	38
70	Electrophysiological Characterization of Ts6 and Ts7, K+ Channel Toxins Isolated through an Improved Tityus serrulatus Venom Purification Procedure. Toxins, 2014, 6, 892-913.	3.4	38
71	The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels. Toxins, 2016, 8, 110.	3.4	38
72	In the picture: disulfide-poor conopeptides, a class of pharmacologically interesting compounds. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2016, 22, 30.	1.4	38

#	Article	IF	CITATIONS
73	Phoneutria nigriventer venom: A pharmacological treasure. Toxicon, 2018, 151, 96-110.	1.6	38
74	BmBKTx1, a Novel Ca2+-activated K+ Channel Blocker Purified from the Asian Scorpion Buthus martensi Karsch. Journal of Biological Chemistry, 2004, 279, 34562-34569.	3.4	37
75	Development and validation of a sensitive ultra performance liquid chromatography tandem mass spectrometry method for the analysis of fentanyl and its major metabolite norfentanyl in urine and whole blood in forensic context. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2010. 878. 1987-1996.	2.3	37
76	PnPP-19, a Synthetic and Nontoxic Peptide Designed from a <i>Phoneutria nigriventer</i> Toxin, Potentiates Erectile Function via NO/cGMP. Journal of Urology, 2015, 194, 1481-1490.	0.4	37
77	Purification and partial characterization of a â€~short' insectotoxin-like peptide from the venom of the scorpion Parabuthus schlechteri. FEBS Letters, 1998, 441, 387-391.	2.8	36
78	Structural Basis for the Voltage-gated Na+ Channel Selectivity of the Scorpion α-Like Toxin BmK M1. Journal of Molecular Biology, 2005, 353, 788-803.	4.2	36
79	Importance of position 8 in μ onotoxin KIIIA for voltageâ€gated sodium channel selectivity. FEBS Journal, 2011, 278, 3408-3418.	4.7	36
80	Norpropoxyphene-induced cardiotoxicity is associated with changes in ion-selectivity and gating of HERG currents. Cardiovascular Research, 1999, 44, 568-578.	3.8	35
81	Evolutionary trace analysis of scorpion toxins specific for K-channels. Proteins: Structure, Function and Bioinformatics, 2003, 54, 361-370.	2.6	35
82	Molecular basis of the mammalian potency of the scorpion αâ€like toxin, BmK M1. FASEB Journal, 2005, 19, 1-24.	0.5	35
83	BjαIT: a novel scorpion α-toxin selective for insects—unique pharmacological tool. Insect Biochemistry and Molecular Biology, 2005, 35, 187-195.	2.7	35
84	Bcs <scp>T</scp> x3 is a founder of a novel sea anemone toxin family of potassium channel blocker. FEBS Journal, 2013, 280, 4839-4852.	4.7	35
85	Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8906-8911.	7.1	35
86	Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. Journal of Biological Chemistry, 2018, 293, 9041-9052.	3.4	35
87	OsK2, a New Selective Inhibitor of Kv1.2 Potassium Channels Purified from the Venom of the Scorpion Orthochirus scrobiculosus. Biochemical and Biophysical Research Communications, 2001, 286, 841-847.	2.1	34
88	A gamut of undiscovered electrophysiological effects produced by Tityus serrulatus toxin 1 on NaV-type isoforms. Neuropharmacology, 2015, 95, 269-277.	4.1	34
89	An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. Journal of Biological Chemistry, 2018, 293, 2534-2545.	3.4	34
90	PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cellular and Molecular Life Sciences, 2018, 75, 4511-4524.	5.4	34

#	Article	IF	CITATIONS
91	Assignment of voltage-gated potassium channel blocking activity to κ-KTx1.3, a non-toxic homologue of κ-hefutoxin-1, from Heterometrus spinifer venom. Biochemical Pharmacology, 2005, 69, 669-678.	4.4	33
92	Solution Structure and Alanine Scan of a Spider Toxin That Affects the Activation of Mammalian Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2007, 282, 4643-4652.	3.4	33
93	Differential effects of five â€~classical' scorpion β-toxins on rNav1.2a and DmNav1 provide clues on species-selectivity. Toxicology and Applied Pharmacology, 2007, 218, 45-51.	2.8	33
94	Purification and characterization of Ts15, the first member of a new α-KTX subfamily from the venom of the Brazilian scorpion Tityus serrulatus. Toxicon, 2011, 58, 54-61.	1.6	33
95	Structural Similarity between Defense Peptide from Wheat and Scorpion Neurotoxin Permits Rational Functional Design. Journal of Biological Chemistry, 2014, 289, 14331-14340.	3.4	33
96	Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7154-7159.	7.1	33
97	A new Kaliotoxin selective towards Kv1.3 and Kv1.2 but not Kv1.1 channels expressed in oocytes. Biochemical and Biophysical Research Communications, 2008, 376, 525-530.	2.1	32
98	Insecticidal peptides from the theraposid spider Brachypelma albiceps: An NMR-based model of Ba2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1190-1196.	2.3	32
99	Synthesis, Solution Structure, and Phylum Selectivity of a Spider δ-Toxin That Slows Inactivation of Specific Voltage-gated Sodium Channel Subtypes. Journal of Biological Chemistry, 2009, 284, 24568-24582.	3.4	32
100	A potent potassium channel blocker from Mesobuthus eupeus scorpion venom. Biochimie, 2010, 92, 1847-1853.	2.6	32
101	The new kappa-KTx 2.5 from the scorpion Opisthacanthus cayaporum. Peptides, 2011, 32, 1509-1517.	2.4	32
102	Development and validation of a sensitive UPLC–MS/MS method for the analysis of narcotic analgesics in urine and whole blood in forensic context. Forensic Science International, 2012, 215, 136-145.	2.2	32
103	Purification, molecular cloning and functional characterization of HelaTx1 (Heterometrus laoticus): The first member of a new κ-KTX subfamily. Biochemical Pharmacology, 2012, 83, 1307-1317.	4.4	32
104	Biochemical and Electrophysiological Characterization of Two Sea Anemone Type 1 Potassium Toxins from a Geographically Distant Population of Bunodosoma caissarum. Marine Drugs, 2013, 11, 655-679.	4.6	32
105	APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1. Marine Drugs, 2017, 15, 287.	4.6	32
106	OdK2, a Kv1.3 channel-selective toxin from the venom of the Iranian scorpion Odonthobuthus doriae. Toxicon, 2008, 51, 1424-1430.	1.6	31
107	Unique Bell-shaped Voltage-dependent Modulation of Na+ Channel Gating by Novel Insect-selective Toxins from the Spider Agelena orientalis. Journal of Biological Chemistry, 2010, 285, 18545-18554.	3.4	31
108	Modular Organization of α-Toxins from Scorpion Venom Mirrors Domain Structure of Their Targets, Sodium Channels. Journal of Biological Chemistry, 2013, 288, 19014-19027.	3.4	31

#	Article	IF	CITATIONS
109	The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels. Scientific Reports, 2016, 6, 32121.	3.3	31
110	Structure of the SthK Carboxy-Terminal Region Reveals a Gating Mechanism for Cyclic Nucleotide-Modulated Ion Channels. PLoS ONE, 2015, 10, e0116369.	2.5	31
111	Evolutionary epitopes of Hsp90 and p23: implications for their interaction. FASEB Journal, 2004, 18, 940-947.	0.5	30
112	The depressant scorpion neurotoxin LqqIT2 selectively modulates the insect voltage-gated sodium channel. Toxicon, 2005, 45, 501-507.	1.6	30
113	Design of Bioactive Peptides from Naturally Occurring μ-Conotoxin Structures. Journal of Biological Chemistry, 2012, 287, 31382-31392.	3.4	30
114	Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6696-E6703.	7.1	30
115	Electrophysiological characterization of Bm K M1, an α-like toxin from Buthus martensi Karsch venom. FEBS Letters, 2001, 495, 61-65.	2.8	29
116	Characterization of two Bunodosoma granulifera toxins active on cardiac sodium channels. British Journal of Pharmacology, 2001, 134, 1195-1206.	5.4	29
117	The poison Dart frog's batrachotoxin modulates Nav1.8. FEBS Letters, 2004, 577, 245-248.	2.8	29
118	Novel conopeptides of the I-superfamily occur in several clades of cone snails. Toxicon, 2004, 44, 539-548.	1.6	29
119	Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. Toxicology Letters, 2017, 265, 156-169.	0.8	29
120	A novel toxin from the venom of the scorpionTityus trivittatus, is the first member of a new α-KTX subfamily. FEBS Letters, 2006, 580, 592-596.	2.8	28
121	Fluorescent protein-scorpion toxin chimera is a convenient molecular tool for studies of potassium channels. Scientific Reports, 2016, 6, 33314.	3.3	28
122	Comparison and characterization of the venoms of three Parabuthus scorpion species occurring in southern Africa. Toxicon, 1998, 36, 341-352.	1.6	27
123	The dual modulation of GIRK1/GIRK2 channels by opioid receptor ligands. European Journal of Pharmacology, 1999, 385, 239-245.	3.5	27
124	Phaiodotoxin, a novel structural class of insect-toxin isolated from the venom of the Mexican scorpion Anuroctonus phaiodactylus. FEBS Journal, 2004, 271, 4753-4761.	0.2	27
125	Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels. Proteins: Structure, Function and Bioinformatics, 2004, 56, 367-375.	2.6	27
126	An insecticidal peptide from the theraposid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera. Peptides, 2008, 29, 1901-1908.	2.4	27

#	Article	IF	CITATIONS
127	Voltageâ€gated sodium channel isoformâ€specific effects of pompilidotoxins. FEBS Journal, 2010, 277, 918-930.	4.7	27
128	Purification, characterization and biosynthesis of parabutoxin 3, a component of Parabuthus transvaalicus venom. FEBS Journal, 2002, 269, 1854-1865.	0.2	26
129	The first potassium channel toxin from the venom of the Iranian scorpionOdonthobuthus doriae. FEBS Letters, 2006, 580, 6254-6258.	2.8	26
130	Subtype specificity interaction of bactridines with mammalian, insect and bacterial sodium channels under voltage clamp conditions. FEBS Journal, 2012, 279, 4025-4038.	4.7	26
131	Cardiac channelopathy causing sudden death as revealed by molecular autopsy. International Journal of Legal Medicine, 2013, 127, 145-151.	2.2	26
132	Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. Biochimie, 2015, 115, 8-16.	2.6	26
133	Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins. Toxins, 2016, 8, 288.	3.4	26
134	Target-Driven Positive Selection at Hot Spots of Scorpion Toxins Uncovers Their Potential in Design of Insecticides. Molecular Biology and Evolution, 2016, 33, 1907-1920.	8.9	26
135	Characterization of scorpion α-like toxin group using two new toxins from the scorpion Leiurus quinquestriatus hebraeus. FEBS Journal, 2002, 269, 3920-3933.	0.2	25
136	Discovery of a new subclass of $\hat{l}\pm$ -conotoxins in the venom of Conus australis. Toxicon, 2014, 91, 145-154.	1.6	25
137	A Subfamily of Acidic α-K+ Toxins. Journal of Biological Chemistry, 2004, 279, 2781-2789.	3.4	24
138	A common "hot spot―confers hERG blockade activity to α-scorpion toxins affecting K+ channels. Biochemical Pharmacology, 2008, 76, 805-815.	4.4	24
139	The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state. Journal of General Physiology, 2013, 141, 359-369.	1.9	24
140	The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides. BMC Genomics, 2014, 15, 295.	2.8	24
141	Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels. Biochimie, 2016, 121, 326-335.	2.6	24
142	Isolation and characterization of Ts19 Fragment II, a new long-chain potassium channel toxin from Tityus serrulatus venom. Peptides, 2016, 80, 9-17.	2.4	24
143	New "Birtoxin analogs―from Androctonus australis venom. Biochemical and Biophysical Research Communications, 2005, 333, 524-530.	2.1	23
144	Inhibitory effect of the recombinant Phoneutria nigriventer Tx1 toxin on voltage-gated sodium channels. Biochimie, 2012, 94, 2756-2763.	2.6	23

#	Article	IF	CITATIONS
145	The proteomic profile of Stichodactyla duerdeni secretion reveals the presence of a novel O-linked glycopeptide. Journal of Proteomics, 2013, 87, 89-102.	2.4	23
146	Revealing the Function and the Structural Model of Ts4: Insights into the "Non-Toxic―Toxin from Tityus serrulatus Venom. Toxins, 2015, 7, 2534-2550.	3.4	23
147	Where cone snails and spiders meet: design of small cyclic sodium hannel inhibitors. FASEB Journal, 2019, 33, 3693-3703.	0.5	23
148	Beyond hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor activities. Scientific Reports, 2020, 10, 4476.	3.3	23
149	Discovery of K _V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Medicinal Research Reviews, 2021, 41, 2423-2473.	10.5	23
150	Isolation and characterization of two novel scorpion toxins: The α-toxin-like Cell8, specific for Nav1.7 channels and the classical anti-mammalian Cell9, specific for Nav1.4 channels. Toxicon, 2010, 56, 613-623.	1.6	22
151	Atypical Reactive Center Kunitz-Type Inhibitor from the Sea Anemone Heteractis crispa. Marine Drugs, 2012, 10, 1545-1565.	4.6	22
152	Novel potassium channel blocker venom peptides from Mesobuthus gibbosus (Scorpiones: Buthidae). Toxicon, 2013, 61, 72-82.	1.6	22
153	Two recombinant α-like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na+ channels. Biochimie, 2013, 95, 1732-1740.	2.6	22
154	Chronic Administration of Anticholinergics in Rats Induces a Shift from Muscarinic to Purinergic Transmission in the Bladder Wall. European Urology, 2013, 64, 502-510.	1.9	22
155	Serrumab: A novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities. Journal of Immunotoxicology, 2014, 11, 133-140.	1.7	22
156	Ts8 scorpion toxin inhibits the Kv4.2 channel and produces nociception inÂvivo. Toxicon, 2016, 119, 244-252.	1.6	22
157	Peptide ion channel toxins from the bootlace worm, the longest animal on Earth. Scientific Reports, 2018, 8, 4596.	3.3	22
158	Evaluation of 11 ionic liquids as potential extraction solvents for benzodiazepines from whole blood using liquid-liquid microextraction combined with LC-MS/MS. Talanta, 2018, 184, 369-374.	5.5	22
159	Caterpillar Venom: A Health Hazard of the 21st Century. Biomedicines, 2020, 8, 143.	3.2	22
160	Changes in GIRK1/GIRK2 deactivation kinetics and basal activity in the presence and absence of RGS4. Life Sciences, 2000, 67, 2305-2317.	4.3	21
161	Differential ion current activation by human 5-HT1A receptors in Xenopus oocytes: Evidence for agonist-directed trafficking of receptor signalling. Neuropharmacology, 2005, 49, 963-976.	4.1	21
162	Structure-Function Elucidation of a New α-Conotoxin, Lo1a, from Conus longurionis. Journal of Biological Chemistry, 2014, 289, 9573-9583.	3.4	21

#	Article	IF	CITATIONS
163	Panusin represents a new family of \hat{l}^2 -defensin-like peptides in invertebrates. Developmental and Comparative Immunology, 2017, 67, 310-321.	2.3	21
164	Detection of 2-Amino-5-Chloropyridine in Urine as a Parameter of Zopiclone (Imovane®) Intake using HPLC with Diode Array Detection. Journal of Analytical Toxicology, 1997, 21, 208-212.	2.8	20
165	Drosotoxin, a selective inhibitor of tetrodotoxin-resistant sodium channels. Biochemical Pharmacology, 2010, 80, 1296-1302.	4.4	20
166	Structure, folding and stability of a minimal homologue from Anemonia sulcata of the sea anemone potassium channel blocker ShK. Peptides, 2018, 99, 169-178.	2.4	20
167	KV1.2 channel-specific blocker from Mesobuthus eupeus scorpion venom: Structural basis of selectivity. Neuropharmacology, 2018, 143, 228-238.	4.1	20
168	Antimicrobial peptides from scorpion venom induce Ca2+ signaling in HL-60 cells. Biochemical and Biophysical Research Communications, 2003, 311, 90-97.	2.1	19
169	Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: A "joint venture―alkaloid from arthropods and amphibians. Toxicon, 2008, 51, 334-344.	1.6	19
170	Molecular divergence of two orthologous scorpion toxins affecting potassium channels. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 159, 313-321.	1.8	19
171	Immunosuppressive evidence of <i>Tityus serrulatus</i> toxins Ts6 and Ts15: insights of a novel K ⁺ channel pattern in T cells. Immunology, 2016, 147, 240-250.	4.4	19
172	Synthesis, folding, structure and activity of a predicted peptide from the sea anemone Oulactis sp. with an ShKT fold. Toxicon, 2018, 150, 50-59.	1.6	19
173	Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Medicinal Research Reviews, 2022, 42, 183-226.	10.5	19
174	Structure of Membrane-active Toxin from Crab Spider Heriaeus melloteei Suggests Parallel Evolution of Sodium Channel Gating Modifiers in Araneomorphae and Mygalomorphae. Journal of Biological Chemistry, 2015, 290, 492-504.	3.4	18
175	Biochemical characterization of cysteine-rich peptides from Oxyopes sp. venom that block calcium ion channels. Toxicon, 2008, 52, 228-236.	1.6	17
176	Astemizole analogues with reduced hERG inhibition as potent antimalarial compounds. Bioorganic and Medicinal Chemistry, 2017, 25, 6332-6344.	3.0	17
177	Synthesis of novel purpurealidin analogs and evaluation of their effect on the cancer-relevant potassium channel KV10.1. PLoS ONE, 2017, 12, e0188811.	2.5	17
178	A Centipede Toxin Family Defines an Ancient Class of $CS\hat{I}\pm\hat{I}^2$ Defensins. Structure, 2019, 27, 315-326.e7.	3.3	17
179	Kunitz-Type Peptides from the Sea Anemone Heteractis crispa Demonstrate Potassium Channel Blocking and Anti-Inflammatory Activities. Biomedicines, 2020, 8, 473.	3.2	17
180	Effect of lanthanum on voltage-dependent gating of a cloned mammalian neuronal potassium channel. Brain Research, 1997, 749, 232-237.	2.2	16

#	Article	IF	CITATIONS
181	The role of the hydrophilic Asn230 residue of the μ-opioid receptor in the potency of various opioid agonists. British Journal of Pharmacology, 2001, 134, 496-506.	5.4	16
182	Anise oil as para-methoxyamphetamine (PMA) precursor. Forensic Science International, 2003, 133, 159-170.	2.2	16
183	δ-Conotoxins Synthesized Using an Acid-cleavable Solubility Tag Approach Reveal Key Structural Determinants for NaV Subtype Selectivity. Journal of Biological Chemistry, 2014, 289, 35341-35350.	3.4	16
184	Expanding the pharmacological profile of κ-hefutoxin 1 and analogues: A focus on the inhibitory effect on the oncogenic channel Kv10.1. Peptides, 2017, 98, 43-50.	2.4	16
185	Venom characterization of the bark scorpion Centruroides edwardsii (Gervais 1843): Composition, biochemical activities and in vivo toxicity for potential prey. Toxicon, 2019, 171, 7-19.	1.6	16
186	Chemical Synthesis, Proper Folding, Nav Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1. Toxins, 2019, 11, 367.	3.4	16
187	Macrophage alteration induced by inflammatory toxins isolated from Tityus discrepans scorpion venom. The role of Na+/Ca2+ exchangers. Toxicon, 2014, 82, 61-75.	1.6	15
188	Identification, chemical synthesis, structure, and function of a new K _V 1 channel blocking peptide from <i>Oulactis</i> sp Peptide Science, 2018, 110, e24073.	1.8	15
189	Magnificamide, a β-Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian α-Amylases. Marine Drugs, 2019, 17, 542.	4.6	15
190	A new multigene HCIQ subfamily from the sea anemone Heteractis crispa encodes Kunitz-peptides exhibiting neuroprotective activity against 6-hydroxydopamine. Scientific Reports, 2020, 10, 4205.	3.3	15
191	A â€~conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile—The pharmacological importance of post-translational modifications. Peptides, 2013, 49, 145-158.	2.4	14
192	Synthesis and characterization of amino acid deletion analogs of κ-hefutoxin 1, a scorpion toxin on potassium channels. Toxicon, 2013, 71, 25-30.	1.6	14
193	The Peptide PnPP-19, a Spider Toxin Derivative, Activates μ-Opioid Receptors and Modulates Calcium Channels. Toxins, 2018, 10, 43.	3.4	14
194	How a Scorpion Toxin Selectively Captures a Prey Sodium Channel: The Molecular and Evolutionary Basis Uncovered. Molecular Biology and Evolution, 2020, 37, 3149-3164.	8.9	14
195	New Insights into the Type II Toxins from the Sea Anemone Heteractis crispa. Toxins, 2020, 12, 44.	3.4	14
196	Small cyclic sodium channel inhibitors. Biochemical Pharmacology, 2021, 183, 114291.	4.4	14
197	Two novel sodium channel inhibitors from Heriaeus melloteei spider venom differentially interacting with mammalian channel's isoforms. Toxicon, 2008, 52, 309-317.	1.6	13
198	Phyla- and Subtype-Selectivity of CgNa, a Na+ Channel Toxin from the Venom of the Giant Caribbean Sea Anemone Condylactis Gigantea. Frontiers in Pharmacology, 2010, 1, 133.	3.5	13

#	Article	IF	CITATIONS
199	Pc16a, the first characterized peptide from Conus pictus venom, shows a novel disulfide connectivity. Peptides, 2012, 34, 106-113.	2.4	13
200	Ligand- and Structure-Based Virtual Screening for Clathrodin-Derived Human Voltage-Gated Sodium Channel Modulators. Journal of Chemical Information and Modeling, 2013, 53, 3223-3232.	5.4	13
201	Venomous Secretions from Marine Snails of the Terebridae Family Target Acetylcholine Receptors. Toxins, 2013, 5, 1043-1050.	3.4	13
202	Substituted 4-phenyl-2-aminoimidazoles and 4-phenyl-4,5-dihydro-2-aminoimidazoles as voltage-gated sodium channel modulators. European Journal of Medicinal Chemistry, 2014, 74, 23-30.	5.5	13
203	Trancriptomic approach reveals the molecular diversity of Hottentotta conspersus (Buthidae) venom. Toxicon, 2015, 99, 73-79.	1.6	13
204	Novel Conopeptides of Largely Unexplored Indo Pacific Conus sp Marine Drugs, 2016, 14, 199.	4.6	13
205	Non-disulfide-bridged peptides from Tityus serrulatus venom: Evidence for proline-free ACE-inhibitors. Peptides, 2016, 82, 44-51.	2.4	13
206	First report on BaltCRP, a cysteine-rich secretory protein (CRISP) from Bothrops alternatus venom: Effects on potassium channels and inflammatory processes. International Journal of Biological Macromolecules, 2019, 140, 556-567.	7.5	13
207	A Venomics Approach Coupled to High-Throughput Toxin Production Strategies Identifies the First Venom-Derived Melanocortin Receptor Agonists. Journal of Medicinal Chemistry, 2020, 63, 8250-8264.	6.4	13
208	Sea Anemone Kunitz-Type Peptides Demonstrate Neuroprotective Activity in the 6-Hydroxydopamine Induced Neurotoxicity Model. Biomedicines, 2021, 9, 283.	3.2	13
209	New polypeptide components purified from mamba venom. FEBS Letters, 2001, 491, 217-221.	2.8	12
210	Drug- and mutagenesis-induced changes in the selectivity filter of a cardiac two-pore background K channel. Cardiovascular Research, 2003, 58, 46-54.	3.8	12
211	Partial transcriptomic profiling of toxins from the venom gland of the scorpion Parabuthus stridulus. Toxicon, 2014, 83, 75-83.	1.6	12
212	Clathrodin, hymenidin and oroidin, and their synthetic analogues as inhibitors of the voltage-gated potassium channels. European Journal of Medicinal Chemistry, 2017, 139, 232-241.	5.5	12
213	Electrophysiological characterization of Tityus obscurus β toxin 1 (To1) on Na+-channel isoforms. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 142-150.	2.6	12
214	Structure-Function Elucidation of a New α-Conotoxin, MilIA, from Conus milneedwardsi. Marine Drugs, 2019, 17, 535.	4.6	12
215	An improved fractionation and fast screening method for the identification of new and selective neurotoxins. Neuroscience Research, 1996, 24, 201-206.	1.9	11
216	Development of a stereospecific radioimmunoassay for the analysis of zopiclone and metabolites in urine. Clinica Chimica Acta, 1996, 253, 103-115.	1.1	11

#	Article	IF	CITATIONS
217	Do voltage-gated Kv1.1 and inward rectifier Kir2.1 potassium channels form heteromultimers?. FEBS Letters, 1996, 390, 280-284.	2.8	11
218	Structure–function study of a chlorotoxin-chimer and its activity on Kv1.3 channels. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 803, 67-73.	2.3	11
219	Block of a subset of sodium channels exacerbates experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2013, 261, 21-28.	2.3	11
220	Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones. Bioorganic and Medicinal Chemistry, 2014, 22, 1568-1585.	3.0	11
221	Toxin bioportides: exploring toxin biological activity and multifunctionality. Cellular and Molecular Life Sciences, 2017, 74, 647-661.	5.4	11
222	Ionic Liquidâ€Based Liquid–Liquid Microextraction for Benzodiazepine Analysis in Postmortem Blood Samples. Journal of Forensic Sciences, 2018, 63, 1875-1879.	1.6	11
223	Purification and biochemical characterization of VesT1s, a novel phospholipase A1 isoform isolated from the venom of the greater banded wasp Vespa tropica. Toxicon, 2018, 148, 74-84.	1.6	11
224	Structural and functional characterisation of a novel peptide from the Australian sea anemone Actinia tenebrosa. Toxicon, 2019, 168, 104-112.	1.6	11
225	Neurotoxin Merging: A Strategy Deployed by the Venom of the Spider Cupiennius salei to Potentiate Toxicity on Insects. Toxins, 2020, 12, 250.	3.4	11
226	AbeTx1 Is a Novel Sea Anemone Toxin with a Dual Mechanism of Action on Shaker-Type K+ Channels Activation. Marine Drugs, 2018, 16, 360.	4.6	10
227	Protein surface topography as a tool to enhance the selective activity of a potassium channel blocker. Journal of Biological Chemistry, 2019, 294, 18349-18359.	3.4	10
228	Microextractions in forensic toxicology: The potential role of ionic liquids. TrAC - Trends in Analytical Chemistry, 2019, 111, 73-84.	11.4	10
229	Human Three-Finger Protein Lypd6 Is a Negative Modulator of the Cholinergic System in the Brain. Frontiers in Cell and Developmental Biology, 2021, 9, 662227.	3.7	10
230	TRPV1 Channel as New Target for Marine Toxins: Example of Gigantoxin I, a Sea Anemone Toxin Acting Via Modulation of the PLA2 Pathway. Acta Chimica Slovenica, 2011, 58, 735-41.	0.6	10
231	Evidence for a function-specific mutation in the neurotoxin, parabutoxin 3. European Journal of Neuroscience, 2003, 17, 1786-1792.	2.6	9
232	Serine 329 of the μ-Opioid Receptor Interacts Differently with Agonists. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 924-930.	2.5	9
233	Action of Clathrodin and Analogues on Voltage-Gated Sodium Channels. Marine Drugs, 2014, 12, 2132-2143.	4.6	9
234	Application of the Characteristic Function to Evaluate and Compare Analytical Variability in an External Quality Assessment Scheme for Serum Ethanol, Clinical Chemistry, 2015, 61, 948-954	3.2	9

#	Article	IF	CITATIONS
235	Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 217, 54-67.	2.6	9
236	AaHIV a sodium channel scorpion toxin inhibits the proliferation of DU145 prostate cancer cells. Biochemical and Biophysical Research Communications, 2020, 521, 340-346.	2.1	9
237	Towards toxin PEGylation: The example of rCollinein-1, a snake venom thrombin-like enzyme, as a PEGylated biopharmaceutical prototype. International Journal of Biological Macromolecules, 2021, 190, 564-573.	7.5	9
238	Identification, Synthesis, Conformation and Activity of an Insulin-like Peptide from a Sea Anemone. Biomolecules, 2021, 11, 1785.	4.0	9
239	Redox state dependency of HERG S631C channel pharmacology: relation to C-type inactivation. FEBS Letters, 2000, 474, 111-115.	2.8	8
240	Pharmacological Comparison of Two Different Insect Models Using the Scorpion α-Like Toxin BmK M1 from Buthus martensii Karsch. Protein and Peptide Letters, 2005, 12, 363-367.	0.9	8
241	Unraveling the peptidome of the South African cone snails Conus pictus and Conus natalis. Peptides, 2013, 41, 8-16.	2.4	8
242	C-Terminal residues in small potassium channel blockers OdK1 and OSK3 from scorpion venom fine-tune the selectivity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 465-472.	2.3	8
243	Medical Findings and Toxicological Analysis in Infant Death by Balloon Gas Asphyxia: A Case Report. Journal of Analytical Toxicology, 2017, 41, 347-349.	2.8	8
244	Tuning Scorpion Toxin Selectivity: Switching From KV1.1 to KV1.3. Frontiers in Pharmacology, 2020, 11, 1010.	3.5	8
245	Design and characterization of a novel structural class of Kv1.3 inhibitors. Bioorganic Chemistry, 2020, 98, 103746.	4.1	8
246	Adaptively evolved human oral actinomycesâ€sourced defensins show therapeutic potential. EMBO Molecular Medicine, 2022, 14, e14499.	6.9	8
247	A neolignan-type impurity arising from the peracid oxidation reaction of anethole in the surreptitious synthesis of 4-methoxyamphetamine (PMA). Forensic Science International, 2004, 143, 133-139.	2.2	7
248	Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS ONE, 2015, 10, e0137611.	2.5	7
249	Kbot55, purified from Buthus occitanus tunetanus venom, represents the first member of a novel α-KTx subfamily. Peptides, 2016, 80, 4-8.	2.4	7
250	Phoneutria nigriventer Spider Toxin PnTx2-1 (δ-Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating. Toxins, 2018, 10, 337.	3.4	7
251	PhcrTx2, a New Crab-Paralyzing Peptide Toxin from the Sea Anemone Phymanthus crucifer. Toxins, 2018, 10, 72.	3.4	7
252	Antinociceptive effects of new pyrazoles compounds mediated by the ASIC-11± channel, TRPV-1 and 1¼MOR receptors. Biomedicine and Pharmacotherapy, 2019, 115, 108915.	5.6	7

#	Article	IF	CITATIONS
253	Pioneering Study on Rhopalurus crassicauda Scorpion Venom: Isolation and Characterization of the Major Toxin and Hyaluronidase. Frontiers in Immunology, 2020, 11, 2011.	4.8	7
254	New Insectotoxin from Tibellus Oblongus Spider Venom Presents Novel Adaptation of ICK Fold. Toxins, 2021, 13, 29.	3.4	7
255	Neurotoxic and convulsant effects induced by jack bean ureases on the mammalian nervous system. Toxicology, 2021, 454, 152737.	4.2	7
256	In Silico and In Vitro Structure–Activity Relationship of Mastoparan and Its Analogs. Molecules, 2022, 27, 561.	3.8	7
257	Kunitz-Type Peptides from Sea Anemones Protect Neuronal Cells against Parkinson's Disease Inductors via Inhibition of ROS Production and ATP-Induced P2X7 Receptor Activation. International Journal of Molecular Sciences, 2022, 23, 5115.	4.1	7
258	Two recombinant depressant scorpion neurotoxins differentially affecting mammalian sodium channels. Toxicon, 2010, 55, 1425-1433.	1.6	6
259	Design of sodium channel ligands with defined selectivity – a case study in scorpion alphaâ€ŧoxins. FEBS Letters, 2017, 591, 3414-3420.	2.8	6
260	The Health Risks of Belgian Illicit Indoor Cannabis Plantations. Journal of Forensic Sciences, 2018, 63, 1783-1789.	1.6	6
261	Jaburetox, a natural insecticide derived from Jack Bean Urease, activates voltage-gated sodium channels to modulate insect behavior. Pesticide Biochemistry and Physiology, 2019, 153, 67-76.	3.6	6
262	3D Pharmacophore-Based Discovery of Novel KV10.1 Inhibitors with Antiproliferative Activity. Cancers, 2021, 13, 1244.	3.7	6
263	AsKC11, a Kunitz Peptide from Anemonia sulcata, Is a Novel Activator of G Protein-Coupled Inward-Rectifier Potassium Channels. Marine Drugs, 2022, 20, 140.	4.6	6
264	A Tale of Toxin Promiscuity: The Versatile Pharmacological Effects of Hcr 1b-2 Sea Anemone Peptide on Voltage-Gated Ion Channels. Marine Drugs, 2022, 20, 147.	4.6	6
265	Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels. Neuropharmacology, 2016, 107, 160-167.	4.1	5
266	Differentiation between decomposed remains of human origin and bigger mammals. Journal of Clinical Forensic and Legal Medicine, 2017, 50, 28-35.	1.0	5
267	Refined structure of BeM9 reveals arginine hand, an overlooked structural motif in scorpion toxins affecting sodium channels. Proteins: Structure, Function and Bioinformatics, 2018, 86, 1117-1122.	2.6	5
268	Evaluation of the suitability of ionic liquid-based liquid-liquid microextractions for blood protein removal. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 57-61.	2.8	5
269	Scorpion toxin MeuNaTxαâ€1 sensitizes primary nociceptors by selective modulation of voltageâ€gated sodium channels. FEBS Journal, 2021, 288, 2418-2435.	4.7	5
270	Review: HCN Channels in the Heart. Current Cardiology Reviews, 2022, 18, .	1.5	5

#	Article	IF	CITATIONS
271	De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules, 2022, 27, 47.	3.8	5
272	Design of New Potent and Selective Thiophene-Based KV1.3 Inhibitors and Their Potential for Anticancer Activity. Cancers, 2022, 14, 2595.	3.7	5
273	Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning. Biochemistry, 2016, 55, 2927-2935.	2.5	4
274	Identification and Characterization of a Peptide from the Stony Coral <i>Heliofungia actiniformis</i> . Journal of Natural Products, 2020, 83, 3454-3463.	3.0	4
275	Anti-inflammatory and detoxification activities of some Ipomoea species determined by ion channel inhibition and their phytochemical constituents. ScienceAsia, 2021, 47, 321.	0.5	4
276	Oleamide in Ipomoea and Dillenia Species and Inflammatory Activity Investigated through Ion Channel Inhibition. Current Pharmaceutical Biotechnology, 2021, 22, 254-261.	1.6	4
277	Functional Characterization of the Nemertide $\hat{I}\pm$ Family of Peptide Toxins. Journal of Natural Products, 2021, 84, 2121-2128.	3.0	4
278	Synthesis and electrophysiological characterization of cyclic morphiceptin analogues. Biochemical Pharmacology, 2004, 67, 1887-1895.	4.4	3
279	Toxins and potassium channels. Toxicon, 2004, 43, 863.	1.6	3
280	Ala-7, His-10 and Arg-12 are crucial amino acids for activity of a synthetically engineered μ-conotoxin. Peptides, 2014, 53, 300-306.	2.4	3
281	tâ€boc synthesis of huwentoxinâ€i through native chemical ligation incorporating a trifluoromethanesulfonic acid cleavage strategy. Biopolymers, 2016, 106, 737-745.	2.4	3
282	Gambierol and n-alkanols inhibit Shaker Kv channel via distinct binding sites outside the K+ pore. Toxicon, 2016, 120, 57-60.	1.6	3
283	Compound Heterozygous SCN5A Mutations in Severe Sodium Channelopathy With Brugada Syndrome: A Case Report. Frontiers in Cardiovascular Medicine, 2020, 7, 117.	2.4	3
284	WIN55,212-2, a Dual Modulator of Cannabinoid Receptors and G Protein-Coupled Inward Rectifier Potassium Channels. Biomedicines, 2021, 9, 484.	3.2	3
285	Potassium channel blocker crafted by α-hairpinin scaffold engineering. Biophysical Journal, 2021, 120, 2471-2481.	0.5	3
286	Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site. ACS Pharmacology and Translational Science, 2021, 4, 1379-1389.	4.9	3
287	Isolation and characterization of FMRFamide-like peptides in the venoms of solitary sphecid wasps. Peptides, 2021, 142, 170575.	2.4	3
288	Synthetic polypeptide crotamine: characterization as a myotoxin and as a target of combinatorial peptides. Journal of Molecular Medicine, 2022, 100, 65-76.	3.9	3

#	Article	IF	CITATIONS
289	Synthesis and biological evaluation of piperazine derivatives as novel isoform selective voltage-gated sodium (Nav) 1.3 channel modulators. Medicinal Chemistry Research, 2015, 24, 2366-2380.	2.4	2
290	Effects of deletion and insertion of amino acids on the activity of HelaTx1, a scorpion toxin on potassium channels. Toxicon, 2016, 111, 1-5.	1.6	2
291	Subtype Specificity of β-Toxin Tf1a from Tityus fasciolatus in Voltage Gated Sodium Channels. Toxins, 2018, 10, 339.	3.4	2
292	Pharmacological activity and NMR solution structure of the leech peptide HSTX-I. Biochemical Pharmacology, 2020, 181, 114082.	4.4	2
293	A Pseudoscorpion's Promising Pinch: The venom of Chelifer cancroides contains a rich source of novel compounds. Toxicon, 2021, 201, 92-104.	1.6	2
294	Solution Structure and Functional Analysis of HelaTx1: The First Toxin Member of the κ-KTx5 Subfamily. BMB Reports, 2020, 53, 260-265.	2.4	2
295	Newly Discovered Peptides from the Coral <i>Heliofungia actiniformis</i> Show Structural and Functional Diversity. Journal of Natural Products, 2022, 85, 1789-1798.	3.0	2
296	Fast protein liquid chromatography for the purification of animal venoms. Journal of Pharmaceutical and Biomedical Analysis, 1996, 14, 1163-1167.	2.8	1
297	Role of individual disulfide bridges in the conformation and activity of spinoxin (α-KTx6.13), a potassium channel toxin from Heterometrus spinifer scorpion venom. Toxicon, 2016, 122, 31-38.	1.6	1
298	Recombinant Production and Structure–Function Study of the Ts1 Toxin from the Brazilian Scorpion Tityus serrulatus. Doklady Biochemistry and Biophysics, 2019, 484, 9-12.	0.9	1
299	GiTx1(β/β-theraphotoxin-Gi1a), a novel toxin from the venom of Brazilian tarantula Grammostola iheringi (Mygalomorphae, Theraphosidae): Isolation, structural assessments and activity on voltage-gated ion channels. Biochimie, 2020, 176, 138-149.	2.6	1
300	Analytical performance of eight enzymatic assays for ethanol in serum evaluated by data from the Belgian external quality assessment scheme. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1211-1217.	2.3	1
301	Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. International Journal of Molecular Sciences, 2022, 23, 7714.	4.1	1
302	Corrigendum to "Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels― [FEBS Lett. 580 (2006) 5728-5732]. FEBS Letters, 2007, 581, 1699-1699.	2.8	0
303	Crotamine Toxicity Revisited: Novel Insights Based on KV Channel Inhibition. Biophysical Journal, 2012, 102, 658a.	0.5	0
304	Pharmacological Properties of Cinnamaldehyde on NaChBac. Biophysical Journal, 2014, 106, 132a.	0.5	0
305	Cover Image, Volume 86, Issue 10. Proteins: Structure, Function and Bioinformatics, 2018, 86, C4-C4.	2.6	0
306	Pegylating toxins: A new trend in toxinology? A successful example of a PEGylated snake venom serine protease. Toxicon, 2020, 177, S58-S59.	1.6	0

0

#	Article	IF	CITATIONS
307	Quinazolinone dimers as a potential new class of safer Kv1 inhibitors: Overcoming hERG, sodium and calcium channel affinities. Bioorganic Chemistry, 2021, 115, 105264.	4.1	0

The Mechanism of Action of Microalgal Toxins Interacting with NaV and KV Channels. , 2014, , 3-34.