David A Weitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/803260/publications.pdf

Version: 2024-02-01

419 papers 66,491 citations

121 h-index 906 241

461 all docs

461 docs citations

times ranked

461

55755 citing authors

g-index

#	Article	IF	CITATIONS
1	Pickering emulsions stabilized by colloidal surfactants: Role of solid particles. Particuology, 2022, 64, 153-163.	2.0	72
2	Regulation of cell attachment, spreading, and migration by hydrogel substrates with independently tunable mesh size. Acta Biomaterialia, 2022, 141, 178-189.	4.1	14
3	Cell-Inspired Hydrogel Microcapsules with a Thin Oil Layer for Enhanced Retention of Highly Reactive Antioxidants. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2597-2604.	4.0	7
4	A machine learning approach-based array sensor for rapidly predicting the mechanisms of action of antibacterial compounds. Nanoscale, 2022, 14, 3087-3096.	2.8	6
5	An outlook on microfluidics: the promise and the challenge. Lab on A Chip, 2022, 22, 530-536.	3.1	115
6	High-fidelity transfer of area-selective atomic layer deposition grown HfO2 through DNA origami-assisted nanolithography. Nano Research, 2022, 15, 5687-5694.	5.8	1
7	The correlation between cell and nucleus size is explained by an eukaryotic cell growth model. PLoS Computational Biology, 2022, 18, e1009400.	1.5	28
8	Nonlinear Phenomena in Microfluidics. Chemical Reviews, 2022, 122, 6921-6937.	23.0	34
9	Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115217119.	3.3	28
10	Dielectrophoretic Characterization of Dynamic Microcapsules and Their Magnetophoretic Manipulation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15765-15773.	4.0	4
11	Micro-ecology restoration of colonic inflammation by in-Situ oral delivery of antibody-laden hydrogel microcapsules. Bioactive Materials, 2022, 15, 305-315.	8.6	8
12	Correlation Tracking: Using simulations to interpolate highly correlated particle tracks. Physical Review E, 2022, 105, 044608.	0.8	0
13	Adsorption of Polar Species at Crude Oil–Water Interfaces: the Chemoelastic Behavior. Langmuir, 2022, 38, 6523-6530.	1.6	7
14	Large-scale single-cell encapsulation in microgels through metastable droplet-templating combined with microfluidic-integration. Biofabrication, 2022, 14, 035015.	3.7	12
15	A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. Nature Communications, 2022, 13, .	5.8	39
16	High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science, 2022, 376, .	6.0	100
17	Line optical tweezers as controllable micromachines: techniques and emerging trends. Soft Matter, 2022, 18, 5359-5365.	1.2	8
18	Initial growth dynamics of 10Ânm nanobubbles in the graphene liquid cell. Applied Nanoscience (Switzerland), 2021, 11, 1-7.	1.6	17

#	Article	IF	CITATIONS
19	A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs. SPE Journal, 2021, 26, 482-497.	1.7	68
20	Diverse Particle Carriers Prepared by Coâ€Precipitation and Phase Separation: Formation and Applications. ChemPlusChem, 2021, 86, 49-58.	1.3	26
21	Hydrogel Microcapsules with a Thin Oil Layer: Smart Triggered Release via Diverse Stimuli. Advanced Functional Materials, 2021, 31, 2009553.	7.8	23
22	The vortex-driven dynamics of droplets within droplets. Nature Communications, 2021, 12, 82.	5.8	26
23	Linear triglycerol-based fluorosurfactants show high potential for droplet-microfluidics-based biochemical assays. Soft Matter, 2021, 17, 7260-7267.	1.2	8
24	Single-Cell Transcriptomics Reveals a Heterogeneous Cellular Response to BK Virus Infection. Journal of Virology, 2021, 95, .	1.5	11
25	Ordered Mesoporous Microcapsules from Double Emulsion Confined Block Copolymer Self-Assembly. ACS Nano, 2021, 15, 3490-3499.	7. 3	40
26	Anomalous mechanics of Zn $<$ sup $>$ 2+ $<$ /sup $>$ -modified fibrin networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
27	Programmable Engineering of DNA-AuNP Encoders Integrated Multimodal Coupled Analysis for Precision Discrimination of Multiple Metal Ions. Nano Letters, 2021, 21, 2141-2148.	4.5	19
28	Sequencing-Based Protein Analysis of Single Extracellular Vesicles. ACS Nano, 2021, 15, 5631-5638.	7.3	61
29	Implications of Quenchingâ€toâ€Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye‣abeled Nanoparticles. Angewandte Chemie, 2021, 133, 15554-15563.	1.6	1
30	Implications of Quenchingâ€toâ€Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dyeâ€Labeled Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 15426-15435.	7.2	15
31	Hydrogel Microcapsules: Hydrogel Microcapsules with a Thin Oil Layer: Smart Triggered Release via Diverse Stimuli (Adv. Funct. Mater. 18/2021). Advanced Functional Materials, 2021, 31, 2170124.	7.8	0
32	Attractive Pickering Emulsion Gels. Advanced Materials, 2021, 33, e2102362.	11.1	78
33	Unexpected scaling of interstitial velocities with permeability due to polymer retention in porous media. Physical Review Fluids, 2021, 6, .	1.0	4
34	Dynamic Speckle Holography. Physical Review Letters, 2021, 127, 088003.	2.9	5
35	Emulsion Designer Using Microfluidic Threeâ€Dimensional Droplet Printing in Droplet. Small, 2021, 17, e2102579.	5.2	22
36	Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin. Scientific Reports, 2021, 11, 16279.	1.6	19

#	Article	IF	Citations
37	Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of <i>InÂVitro</i> Multicomponent Interpenetrating Cytoskeletal Networks. Physical Review Letters, 2021, 127, 108101.	2.9	15
38	Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Materials Today Nano, 2021, 16, 100136.	2.3	51
39	Microchannel measurements of viscosity for both gases and liquids. Lab on A Chip, 2021, 21, 2805-2811.	3.1	8
40	Microfluidic Fabrication of Phase-Inverted Microcapsules with Asymmetric Shell Membranes with Graded Porosity. ACS Macro Letters, 2021, 10, 116-121.	2.3	7
41	Digital Microfluidic Thermal Control Chip-Based Multichannel Immunosensor for Noninvasively Detecting Acute Myocardial Infarction. Analytical Chemistry, 2021, 93, 15033-15041.	3.2	23
42	Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nature Communications, 2021, 12, 6600.	5.8	52
43	Synthesis of nanomedicine hydrogel microcapsules by droplet microfluidic process and their pH and temperature dependent release. RSC Advances, 2021, 11, 37814-37823.	1.7	14
44	Advanced microfluidic devices for fabricating multiâ€structural hydrogel microsphere. Exploration, 2021, 1, .	5.4	35
45	A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release. Chinese Chemical Letters, 2020, 31, 249-252.	4.8	33
46	Microfluidicsâ€Assisted Assembly of Injectable Photonic Hydrogels toward Reflective Cooling. Small, 2020, 16, e1903939.	5.2	63
47	Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants. Environmental Science: Nano, 2020, 7, 656-664.	2.2	51
48	DNAzyme-powered nucleic acid release from solid supports. Chemical Communications, 2020, 56, 647-650.	2.2	3
49	Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab on A Chip, 2020, 20, 147-154.	3.1	45
50	Rock damage evolution model of pulsating fracturing based on energy evolution theory. Energy Science and Engineering, 2020, 8, 1050-1067.	1.9	13
51	Spontaneous Creation of Anisotropic Polymer Crystals with Orientation-Sensitive Birefringence in Liquid Drops. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3912-3918.	4.0	9
52	Observations of 3 nm Silk Nanofibrils Exfoliated from Natural Silkworm Silk Fibers., 2020, 2, 153-160.		37
53	Stiffness of the interface between a colloidal body-centered cubic crystal and its liquid. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25225-25229.	3.3	3
54	Tunable Nanochannels Connected in Series for Dynamic Control of Multiple Concentration-Polarization Layers and Preconcentrated Molecule Plugs. Nano Letters, 2020, 20, 8524-8533.	4.5	9

#	Article	IF	CITATIONS
55	Jâ€Aggregateâ€Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie, 2020, 132, 20240-20249.	1.6	10
56	Rapid isolation of antigen-specific B-cells using droplet microfluidics. RSC Advances, 2020, 10, 27006-27013.	1.7	30
57	Jâ€Aggregateâ€Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie - International Edition, 2020, 59, 20065-20074.	7.2	42
58	Interfacial Viscoelasticity in Crude Oil-Water Systems to Understand Incremental Oil Recovery. , 2020, , .		3
59	Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device. Lab on A Chip, 2020, 20, 3914-3921.	3.1	26
60	Universal Statistical Laws for the Velocities of Collective Migrating Cells. Advanced Biology, 2020, 4, e2000065.	3.0	13
61	Microfluidic Synthesis of Multimode Au@CoFeB-Rg3 Nanomedicines and Their Cytotoxicity and Anti-Tumor Effects. Chemistry of Materials, 2020, 32, 5044-5056.	3.2	27
62	Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. Acta Biomaterialia, 2020, 111, 181-196.	4.1	55
63	A High-Throughput Screening System Based on Droplet Microfluidics for Glucose Oxidase Gene Libraries. Molecules, 2020, 25, 2418.	1.7	21
64	Active Encapsulation in Biocompatible Nanocapsules. Small, 2020, 16, e2002716.	5.2	42
65	Droplet encapsulation improves accuracy of immune cell cytokine capture assays. Lab on A Chip, 2020, 20, 1513-1520.	3.1	30
66	Stimuli responsive Janus microgels with convertible hydrophilicity for controlled emulsion destabilization. Soft Matter, 2020, 16, 3613-3620.	1.2	18
67	Single Extracellular Vesicle Protein Analysis Using Immunoâ€Droplet Digital Polymerase Chain Reaction Amplification. Advanced Biology, 2020, 4, e1900307.	3.0	52
68	The Fourth Decade of Microfluidics. Small, 2020, 16, e2000070.	5.2	30
69	Absorbent–Adsorbates: Large Amphiphilic Janus Microgels as Droplet Stabilizers. ACS Applied Materials & Drop	4.0	22
70	Effect of Divalent Cations on the Structure and Mechanics of Vimentin Intermediate Filaments. Biophysical Journal, 2020, 119, 55-64.	0.2	19
71	Single Molecule Protein Detection with Attomolar Sensitivity Using Droplet Digital Enzyme-Linked Immunosorbent Assay. ACS Nano, 2020, 14, 9491-9501.	7.3	138
72	Core–Shell Nanohydrogels with Programmable Swelling for Conformance Control in Porous Media. ACS Applied Materials & Conformance Control in Porous Media.	4.0	16

#	Article	IF	CITATIONS
73	Dissolvable Polyacrylamide Beads for Highâ€Throughput Droplet DNA Barcoding. Advanced Science, 2020, 7, 1903463.	5.6	25
74	Nanoparticleâ€Shelled Catalytic Bubble Micromotor. Advanced Materials Interfaces, 2020, 7, 1901583.	1.9	28
75	Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. Angewandte Chemie, 2020, 132, 4750-4758.	1.6	40
76	Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. Angewandte Chemie - International Edition, 2020, 59, 4720-4728.	7.2	81
77	Novel nonequilibrium steady states in multiple emulsions. Physics of Fluids, 2020, 32, .	1.6	20
78	Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells. Biomaterials, 2020, 248, 120014.	5.7	57
79	MAFG-driven astrocytes promote CNS inflammation. Nature, 2020, 578, 593-599.	13.7	282
80	Origin of anomalous polymer-induced fluid displacement in porous media. Physical Review Fluids, 2020, 5, .	1.0	23
81	Propagation and adsorption of nanoparticles in porous medium as traveling waves. Physical Review Research, 2020, 2, .	1.3	7
82	Preparation of monodisperse hybrid gel particles with various morphologies <i>via</i> flow rate and temperature control. Soft Matter, 2019, 15, 6934-6937.	1.2	13
83	Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15392-15397.	3.3	124
84	Compression Generated by a 3D Supracellular Actomyosin Cortex Promotes Embryonic Stem Cell Colony Growth and Expression of Nanog and Oct4. Cell Systems, 2019, 9, 214-220.e5.	2.9	20
85	Self-Limited Accumulation of Colloids in Porous Media. Physical Review Letters, 2019, 123, 158005.	2.9	31
86	Controllable Fabrication of Inhomogeneous Microcapsules for Triggered Release by Osmotic Pressure. Small, 2019, 15, e1903087.	5.2	23
87	Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nature Communications, 2019, 10, 4546.	5.8	95
88	Single-step assembly of asymmetric vesicles. Lab on A Chip, 2019, 19, 749-756.	3.1	30
89	Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness. Biophysical Journal, 2019, 116, 518-529.	0.2	46
90	A simple mix-and-read bacteria detection system based on a DNAzyme and a molecular beacon. Chemical Communications, 2019, 55, 7358-7361.	2.2	19

#	Article	IF	Citations
91	Transparent Impact-Resistant Composite Films with Bioinspired Hierarchical Structure. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23616-23622.	4.0	39
92	Waterâ€Triggered Rapid Release of Biocide with Enhanced Antimicrobial Activity in Biodiesel. Macromolecular Materials and Engineering, 2019, 304, 1900156.	1.7	4
93	Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (μFACS). Lab on A Chip, 2019, 19, 2435-2443.	3.1	63
94	Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks. Lab on A Chip, 2019, 19, 2089-2095.	3.1	53
95	Millimeter-Size Pickering Emulsions Stabilized with Janus Microparticles. Langmuir, 2019, 35, 4693-4701.	1.6	55
96	Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7744-7749.	3.3	85
97	Jetting to dripping transition: Critical aspect ratio in step emulsifiers. Physics of Fluids, 2019, 31, .	1.6	25
98	Hydrogel micromotors with catalyst-containing liquid core and shell. Journal of Physics Condensed Matter, 2019, 31, 214004.	0.7	31
99	Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels. Lab on A Chip, 2019, 19, 4064-4070.	3.1	21
100	Reduced Graphene Oxide Membrane Induced Robust Structural Colors toward Personal Thermal Management. ACS Photonics, 2019, 6, 116-122.	3.2	54
101	Direct observation of crystallization and melting with colloids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1180-1184.	3.3	28
102	Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins – the introduction of protein-corona-free polymer nanomedicine. Nanoscale, 2018, 10, 6194-6204.	2.8	37
103	Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds microfluidics flows. Computers and Fluids, 2018, 167, 33-39.	1.3	33
104	Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates. Nano Letters, 2018, 18, 1448-1453.	4.5	73
105	Rapid Patterning of PDMS Microfluidic Device Wettability Using Syringe-Vacuum-Induced Segmented Flow in Nonplanar Geometry. ACS Applied Materials & Elow in Nonplanar Geometry. ACS Applied Materials & Elow in Nonplanar Geometry. ACS Applied Materials & Elow in Nonplanar Geometry.	4.0	45
106	Stimuli-responsive dendronized polymeric hydrogels through Schiff-base chemistry showing remarkable topological effects. Polymer Chemistry, 2018, 9, 378-387.	1.9	36
107	Surfactant Variations in Porous Media Localize Capillary Instabilities during Haines Jumps. Physical Review Letters, 2018, 120, 028005.	2.9	30
108	Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells. Small, 2018, 14, 1702955.	5.2	118

#	Article	IF	CITATIONS
109	Geometric constraints during epithelial jamming. Nature Physics, 2018, 14, 613-620.	6.5	196
110	Microfluidic Model Porous Media: Fabrication and Applications. Small, 2018, 14, e1703575.	5. 2	160
111	High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation. Lab on A Chip, 2018, 18, 323-334.	3.1	51
112	Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance. Lab on A Chip, 2018, 18, 132-138.	3.1	79
113	Determining the lipid specificity of insoluble protein transmembrane domains. Lab on A Chip, 2018, 18, 3561-3569.	3.1	1
114	Macroscopic Selfâ€Assembly: Versatile Hydrogel Ensembles with Macroscopic Multidimensions (Adv.) Tj ETQq0 C	0	Overlock 10 Tf
115	Versatile Hydrogel Ensembles with Macroscopic Multidimensions. Advanced Materials, 2018, 30, 1803475.	11.1	41
116	Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation. ACS Nano, 2018, 12, 11600-11609.	7.3	111
117	Wetting controls of droplet formation in step emulsification. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9479-9484.	3.3	74
118	Collective Shape Actuation of Polymer Double Emulsions by Solvent Evaporation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31865-31869.	4.0	8
119	Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nature Communications, 2018, 9, 1899.	5.8	43
120	Evolution on the Biophysical Fitness Landscape of an RNA Virus. Molecular Biology and Evolution, 2018, 35, 2390-2400.	3 . 5	45
121	A Versatile Strategy to Fabricate 3D Conductive Frameworks for Lithium Metal Anodes. Advanced Materials Interfaces, 2018, 5, 1800807.	1.9	25
122	Dynamic Microcapsules with Rapid and Reversible Permeability Switching. Advanced Functional Materials, 2018, 28, 1803385.	7.8	37
123	Hydrogel Microcapsules with Dynamic pH-Responsive Properties from Methacrylic Anhydride. Macromolecules, 2018, 51, 5798-5805.	2.2	45
124	Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47, 5646-5683.	18.7	410
125	Elucidating the mechanism of step emulsification. Physical Review Fluids, 2018, 3, .	1.0	27
126	Functional Microcapsules via Thiol–Ene Photopolymerization in Droplet-Based Microfluidics. ACS Applied Materials & Droplet-Based Microfluidics. ACS Applied Materials & Droplet-Based Microfluidics. ACS	4.0	39

#	Article	IF	CITATIONS
127	An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1123-1128.	3.3	133
128	Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. Nano Letters, 2017, 17, 606-614.	4.5	123
129	Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing. Nano Letters, 2017, 17, 2015-2020.	4.5	78
130	Controlled Generation of Ultrathinâ€5hell Double Emulsions and Studies on Their Stability. ChemPhysChem, 2017, 18, 1393-1399.	1.0	29
131	Sensitive and predictable separation of microfluidic droplets by size using in-line passive filter. Biomicrofluidics, 2017, 11, 014114.	1.2	13
132	Convection-Driven Pull-Down Assays in Nanoliter Droplets Using Scaffolded Aptamers. Analytical Chemistry, 2017, 89, 3468-3473.	3.2	52
133	Ultrafast Nanofiltration through Large-Area Single-Layered Graphene Membranes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9239-9244.	4.0	54
134	The microfluidic nebulator: production of sub-micrometer sized airborne drops. Lab on A Chip, 2017, 17, 1475-1480.	3.1	12
135	Direct Observation of Entropic Stabilization of bcc Crystals Near Melting. Physical Review Letters, 2017, 118, 088003.	2.9	27
136	An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. Cell, 2017, 168, 1135-1148.e12.	13.5	182
137	Tandem emulsification for high-throughput production of double emulsions. Lab on A Chip, 2017, 17, 936-942.	3.1	57
138	Rapid Production of Submicron Drug Substance Particles by Supersonic Spray Drying. Crystal Growth and Design, 2017, 17, 2046-2053.	1.4	8
139	Collective generation of milliemulsions by step-emulsification. RSC Advances, 2017, 7, 14932-14938.	1.7	20
140	Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced Activity. Advanced Functional Materials, 2017, 27, 1700975.	7.8	34
141	Efficient extraction of oil from droplet microfluidic emulsions. Biomicrofluidics, 2017, 11, 034111.	1.2	15
142	Stable, Fluorescent Polymethylmethacrylate Particles for the Long-Term Observation of Slow Colloidal Dynamics. Langmuir, 2017, 33, 6382-6389.	1.6	18
143	Reply to the  Comment on "Robust scalable high throughput production of monodisperse dropsâ€â€™ by M. Nakajima, Lab Chip, 2017, 17 , DOI: 10.1039/C7LC00181A. Lab on A Chip, 2017, 17, 2332-2333.	3.1	2
144	Controlled self-assembly of alginate microgels by rapidly binding molecule pairs. Lab on A Chip, 2017, 17, 2481-2490.	3.1	24

#	Article	IF	Citations
145	Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices. Nature Reviews Genetics, 2017, 18, 345-361.	7.7	274
146	Highâ€Throughput Step Emulsification for the Production of Functional Materials Using a Glass Microfluidic Device. Macromolecular Chemistry and Physics, 2017, 218, 1600472.	1.1	113
147	Local Pore Size Correlations Determine Flow Distributions in Porous Media. Physical Review Letters, 2017, 119, 144501.	2.9	65
148	Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design. Lab on A Chip, 2017, 17, 4059-4069.	3.1	51
149	Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022038.	2.3	194
150	Selfâ€Healing Materials: Tough Selfâ€Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks (Adv. Mater. 38/2017). Advanced Materials, 2017, 29, .	11.1	2
151	Optically reconfigurable chiral microspheres of self-organized helical superstructures with handedness inversion. Materials Horizons, 2017, 4, 1190-1195.	6.4	83
152	Polymer Phase Separation in a Microcapsule Shell. Macromolecules, 2017, 50, 7681-7686.	2.2	26
153	Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8618-E8627.	3.3	362
154	Axial Confocal Tomography of Capillary-Contained Colloidal Structures. Langmuir, 2017, 33, 13343-13349.	1.6	2
155	Robust mechanobiological behavior emerges in heterogeneous myosin systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8147-E8154.	3.3	5
156	Fabrication of Calcium Phosphateâ€Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer Drugs for Biomedical Applications. Advanced Healthcare Materials, 2017, 6, 1700664.	3.9	24
157	Triple Junction at the Triple Point Resolved on the Individual Particle Level. Physical Review Letters, 2017, 119, 128001.	2.9	12
158	Physical limits to biomechanical sensing in disordered fibre networks. Nature Communications, 2017, 8, 16096.	5.8	47
159	Perspective on droplet-based single-cell sequencing. Lab on A Chip, 2017, 17, 2539-2539.	3.1	4
160	Biocompatible microcapsules with a water core templated from single emulsions. Chinese Chemical Letters, 2017, 28, 1897-1900.	4.8	21
161	Microfluidics: Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced Activity (Adv. Funct. Mater. 29/2017). Advanced Functional Materials, 2017, 27, .	7.8	О
162	Tough Selfâ∈Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks. Advanced Materials, 2017, 29, 1702616.	11.1	304

#	Article	IF	CITATIONS
163	Biocompatible Amphiphilic Hydrogel–Solid Dimer Particles as Colloidal Surfactants. ACS Nano, 2017, 11, 11978-11985.	7.3	72
164	Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nature Communications, 2017, 8, 2011.	5.8	175
165	Multistage Transformation and Lattice Fluctuation at AgCl–Ag Interface. Journal of Physical Chemistry Letters, 2017, 8, 5853-5860.	2.1	3
166	Multi-functional micromotor: microfluidic fabrication and water treatment application. Lab on A Chip, 2017, 17, 4220-4224.	3.1	53
167	Creation of Faceted Polyhedral Microgels from Compressed Emulsions. Small, 2017, 13, 1701256.	5.2	23
168	Parallelization of microfluidic flow-focusing devices. Physical Review E, 2017, 95, 043105.	0.8	26
169	Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nature Materials, 2017, 16, 236-243.	13.3	286
170	Dispersing hydrophobic natural colourant \hat{l}^2 -carotene in shellac particles for enhanced stability and tunable colour. Royal Society Open Science, 2017, 4, 170919.	1.1	16
171	Massively parallel single-nucleus RNA-seq with DroNc-seq. Nature Methods, 2017, 14, 955-958.	9.0	859
172	Drying regimes in homogeneous porous media from macro- to nanoscale. Physical Review Fluids, 2017, 2, .	1.0	48
173	Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. Methods in Enzymology, 2016, 568, 389-426.	0.4	30
174	Stable Ultrathinâ€Shell Double Emulsions for Controlled Release. ChemPhysChem, 2016, 17, 1553-1556.	1.0	24
175	A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders. Scientific Reports, 2016, 6, 22575.	1.6	12
176	Optimization and development of a universal flow-based microfluidic gradient generator. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	8
177	Droplet microfluidics: A tool for biology, chemistry and nanotechnology. TrAC - Trends in Analytical Chemistry, 2016, 82, 118-125.	5.8	280
178	Microfluidic Fabrication of Pluronic Vesicles with Controlled Permeability. Langmuir, 2016, 32, 5350-5355.	1.6	34
179	Drug Co-Delivery: Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications (Adv. Funct. Mater. 34/2016). Advanced Functional Materials, 2016, 26, 6138-6138.	7.8	0
180	Oneâ€Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angewandte Chemie - International Edition, 2016, 55, 13470-13474.	7.2	90

#	Article	IF	CITATIONS
181	Oneâ€Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angewandte Chemie, 2016, 128, 13668-13672.	1.6	33
182	Robust scalable high throughput production of monodisperse drops. Lab on A Chip, 2016, 16, 4163-4172.	3.1	178
183	Fluorocarbon Oil Reinforced Triple Emulsion Drops. Advanced Materials, 2016, 28, 8425-8430.	11.1	37
184	Fluctuations in the Kinetics of Linear Protein Self-Assembly. Physical Review Letters, 2016, 116, 258103.	2.9	32
185	Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications. Advanced Functional Materials, 2016, 26, 6158-6169.	7.8	40
186	Imaging grain boundary grooves in hard-sphere colloidal bicrystals. Physical Review E, 2016, 94, 042604.	0.8	6
187	Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nature Communications, 2016, 7, 11589.	5.8	285
188	Dynamic sound scattering: Field fluctuation spectroscopy with singly scattered ultrasound in the near and far fields. Journal of the Acoustical Society of America, 2016, 140, 1992-2001.	0.5	6
189	Microfluidicsâ€Assisted Osteogenesis: Injectable Stem Cellâ€Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs (Adv. Funct.) Tj ETQq1 1 0.	78 4.3 14 rş	gBTI†Overlock
190	Composition and degradation of turbine oil sludge. Journal of Thermal Analysis and Calorimetry, 2016, 125, 155-162.	2.0	6
191	Injectable Stem Cell‣aden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs. Advanced Functional Materials, 2016, 26, 2809-2819.	7.8	309
192	Triple Emulsion Drops with An Ultrathin Water Layer: High Encapsulation Efficiency and Enhanced Cargo Retention in Microcapsules. Advanced Materials, 2016, 28, 3340-3344.	11.1	55
193	Encapsulation and Enhanced Retention of Fragrance in Polymer Microcapsules. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 4007-4013.	4.0	115
194	One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oilâ€"water interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 608-613.	3.3	8
195	Probing phenotypic growth in expanding Bacillus subtilis biofilms. Applied Microbiology and Biotechnology, 2016, 100, 4607-4615.	1.7	40
196	One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell. Lab on A Chip, 2016, 16, 1549-1555.	3.1	119
197	Drying kinetics driven by the shape of the air/water interface in a capillary channel. European Physical Journal E, 2016, 39, 23.	0.7	40
198	Controlled assembly of heterotypic cells in a core–shell scaffold: organ in a droplet. Lab on A Chip, 2016, 16, 1346-1349.	3.1	169

#	Article	IF	Citations
199	Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. Lab on A Chip, 2016, 16, 65-69.	3.1	74
200	Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME Journal, 2016, 10, 427-436.	4.4	184
201	Label-free single-cell protein quantification using a drop-based mix-and-read system. Scientific Reports, 2015, 5, 12756.	1.6	26
202	Hybrid Microgels with Thermoâ€Tunable Elasticity for Controllable Cell Confinement. Advanced Healthcare Materials, 2015, 4, 1841-1848.	3.9	32
203	Artifactâ€Free Quantification and Sequencing of Rare Recombinant Viruses by Using Dropâ€Based Microfluidics. ChemBioChem, 2015, 16, 2167-2171.	1.3	28
204	Back Cover: Macromol. Biosci. 12/2015. Macromolecular Bioscience, 2015, 15, 1764-1764.	2.1	0
205	Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Advanced Healthcare Materials, 2015, 4, 1628-1633.	3.9	272
206	Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release. Macromolecular Bioscience, 2015, 15, 1641-1646.	2.1	72
207	Wholeâ€Genome Sequencing of a Single Viral Species from a Highly Heterogeneous Sample. Angewandte Chemie - International Edition, 2015, 54, 13985-13988.	7.2	17
208	Soft Poly(dimethylsiloxane) Elastomers from Architectureâ€Driven Entanglement Free Design. Advanced Materials, 2015, 27, 5132-5140.	11.1	163
209	Crystallization and reentrant melting of charged colloids in nonpolar solvents. Physical Review E, 2015, 91, 030301.	0.8	32
210	Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015, 161, 1202-1214.	13.5	5,908
211	Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell, 2015, 161, 1187-1201.	13.5	2,857
212	Isolation and Analysis of Rare Norovirus Recombinants from Coinfected Mice Using Drop-Based Microfluidics. Journal of Virology, 2015, 89, 7722-7734.	1.5	32
213	Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Current Opinion in Cell Biology, 2015, 32, 82-91.	2.6	134
214	Protein Microgels from Amyloid Fibril Networks. ACS Nano, 2015, 9, 43-51.	7.3	121
215	Microcapsules for Enhanced Cargo Retention and Diversity. Small, 2015, 11, 2903-2909.	5.2	39
216	Colloidal Polymers with Controlled Sequence and Branching Constructed from Magnetic Field Assembled Nanoparticles. ACS Nano, 2015, 9, 2720-2728.	7.3	59

#	Article	IF	Citations
217	Microfabricated liquid chamber utilizing solvent-drying for in-situ TEM imaging of nanoparticle self-assembly., 2015,,.		1
218	Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells. Lab on A Chip, 2015, 15, 3335-3340.	3.1	59
219	3D structure of individual nanocrystals in solution by electron microscopy. Science, 2015, 349, 290-295.	6.0	238
220	Anisotropic elasticity of experimental colloidal Wigner crystals. Physical Review E, 2015, 91, 032310.	0.8	14
221	Inhibition of Multidrug Resistance of Cancer Cells by Coâ€Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes. Advanced Functional Materials, 2015, 25, 3330-3340.	7.8	114
222	Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6619-6624.	3.3	87
223	Graphene-templated directional growth of an inorganic nanowire. Nature Nanotechnology, 2015, 10, 423-428.	15.6	75
224	Microfluidic Fabrication and Micromechanics of Permeable and Impermeable Elastomeric Microbubbles. Langmuir, 2015, 31, 3489-3493.	1.6	17
225	Mechanics and dynamics of reconstituted cytoskeletal systems. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3038-3042.	1.9	24
226	Stress controls the mechanics of collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9573-9578.	3.3	284
227	Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature Biotechnology, 2015, 33, 1165-1172.	9.4	748
228	Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science, 2015, 349, 956-960.	6.0	110
229	Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10845-10850.	3.3	242
230	Chemically induced coalescence in droplet-based microfluidics. Lab on A Chip, 2015, 15, 1140-1144.	3.1	60
231	High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics. PLoS ONE, 2015, 10, e0116328.	1.1	64
232	Local shear transformations in deformed and quiescent hard-sphere colloidal glasses. Physical Review E, 2014, 90, 042305.	0.8	68
233	Ultrathin Shell Double Emulsion Templated Giant Unilamellar Lipid Vesicles with Controlled Microdomain Formation. Small, 2014, 10, 950-956.	5.2	150
234	Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Lightâ€Driven Chiral Molecular Switch. Advanced Optical Materials, 2014, 2, 845-848.	3.6	128

#	Article	IF	Citations
235	Microshells: Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch (Advanced Optical) Tj ETQq1 1	0.78 4 314	rgBT /Overlo
236	25th Anniversary Article: Double Emulsion Templated Solid Microcapsules: Mechanics And Controlled Release. Advanced Materials, 2014, 26, 2205-2218.	11.1	226
237	Emergent properties of composite semiflexible biopolymer networks. Bioarchitecture, 2014, 4, 138-143.	1.5	31
238	Identifying directional persistence in intracellular particle motion using Hidden Markov Models. Mathematical Biosciences, 2014, 248, 140-145.	0.9	17
239	Mobilization of a trapped non-wetting fluid from a three-dimensional porous medium. Physics of Fluids, 2014, 26, .	1.6	114
240	Fluctuations in flow produced by competition between apparent wall slip and dilatancy. Rheologica Acta, 2014, 53, 333-347.	1.1	18
241	Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nature Biotechnology, 2014, 32, 473-478.	9.4	298
242	The microfluidic post-array device: high throughput production of single emulsion drops. Lab on A Chip, 2014, 14, 705-709.	3.1	34
243	Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. Nature Communications, 2014, 5, 3068.	5.8	152
244	Quantifying cell-generated mechanical forces within living embryonic tissues. Nature Methods, 2014, 11, 183-189.	9.0	336
245	A high-throughput cellulase screening system based on droplet microfluidics. Biomicrofluidics, 2014, 8, 041102.	1.2	60
246	Expansion and rupture of charged microcapsules. Materials Horizons, 2014, 1, 92-95.	6.4	4
247	Uncovering the Mechanism of Trapping and Cell Orientation during Neisseria gonorrhoeae Twitching Motility. Biophysical Journal, 2014, 107, 1523-1531.	0.2	40
248	Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium. Physics of Fluids, 2014, 26, .	1.6	79
249	Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism. Cell, 2014, 158, 1083-1093.	13.5	158
250	Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy. Cell, 2014, 158, 822-832.	13.5	444
251	Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab on A Chip, 2014, 14, 3710-3718.	3.1	240
252	Mechanism of Calponin Stabilization of Cross-Linked Actin Networks. Biophysical Journal, 2014, 106, 793-800.	0.2	19

#	Article	IF	CITATIONS
253	Spatial Propagation of Protein Polymerization. Physical Review Letters, 2014, 112, 098101.	2.9	20
254	Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chemistry, 2014, 152, 271-275.	4.2	78
255	Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. International Journal of Pharmaceutics, 2014, 472, 82-87.	2.6	89
256	Spatial Fluctuations of Fluid Velocities in Flow through a Three-Dimensional Porous Medium. Physical Review Letters, 2013, 111, 064501.	2.9	137
257	Stimuli-Responsive Core–Shell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane. Macromolecules, 2013, 46, 3309-3313.	2.2	77
258	The Role of Vimentin Intermediate Filaments in Cortical and Cytoplasmic Mechanics. Biophysical Journal, 2013, 105, 1562-1568.	0.2	225
259	Visualizing multiphase flow and trapped fluid configurations in a model threeâ€dimensional porous medium. AICHE Journal, 2013, 59, 1022-1029.	1.8	127
260	Biodegradable Core–Shell Carriers for Simultaneous Encapsulation of Synergistic Actives. Journal of the American Chemical Society, 2013, 135, 7933-7937.	6.6	167
261	Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device. Microfluidics and Nanofluidics, 2013, 14, 509-514.	1.0	66
262	Block-and-break generation of microdroplets with fixed volume. Biomicrofluidics, 2013, 7, 024108.	1.2	38
263	Rolling particle lithography by soft polymer microparticles. Soft Matter, 2013, 9, 2206.	1.2	9
264	Transport of charged colloids in a nonpolar solvent. Soft Matter, 2013, 9, 5173.	1.2	14
265	Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics. Lab on A Chip, 2013, 13, 4047-4052.	3.1	71
266	Gas-core triple emulsions for ultrasound triggered release. Soft Matter, 2013, 9, 38-42.	1.2	37
267	Colloidal Particles: Crystals, Glasses, and Gels. Annual Review of Condensed Matter Physics, 2013, 4, 217-233.	5.2	225
268	Rapid growth of large, defect-free colloidal crystals. Soft Matter, 2013, 9, 320-328.	1.2	42
269	Formation of polymersomes with double bilayers templated by quadruple emulsions. Lab on A Chip, 2013, 13, 1351.	3.1	47
270	One Step Formation of Controllable Complex Emulsions: From Functional Particles to Simultaneous Encapsulation of Hydrophilic and Hydrophobic Agents into Desired Position. Advanced Materials, 2013, 25, 2536-2541.	11.1	161

#	Article	lF	Citations
271	Single-cell analysis and sorting using droplet-based microfluidics. Nature Protocols, 2013, 8, 870-891.	5.5	1,146
272	Polymer Microcapsules with Programmable Active Release. Journal of the American Chemical Society, 2013, 135, 7744-7750.	6.6	149
273	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12127-12134.	4.0	45
274	Polymersomes Containing a Hydrogel Network for High Stability and Controlled Release. Small, 2013, 9, 124-131.	5.2	68
275	Nuclear Envelope Composition Determines the Ability of Neutrophil-type Cells to Passage through Micron-scale Constrictions. Journal of Biological Chemistry, 2013, 288, 8610-8618.	1.6	270
276	Thermally Switched Release from Nanoparticle Colloidosomes. Advanced Functional Materials, 2013, 23, 5925-5929.	7.8	52
277	One Step Formation of Controllable Complex Emulsions: From Functional Particles to Simultaneous Encapsulation of Hydrophilic and Hydrophobic Agents into Desired Position (Adv. Mater. 18/2013). Advanced Materials, 2013, 25, 2535-2535.	11.1	4
278	Titelbild: Hole-Shell Microparticles from Controllably Evolved Double Emulsions (Angew. Chem.) Tj ETQq0 0 0 rgE	BT /Overloo	:k 10 Tf 50 4
279	Characterizing Concentrated, Multiply Scattering, and Actively Driven Fluorescent Systems with Confocal Differential Dynamic Microscopy. Physical Review Letters, 2012, 108, 218103.	2.9	90
280	Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab on A Chip, 2012, 12, 2135.	3.1	357
281	Photo―and Thermoresponsive Polymersomes for Triggered Release. Angewandte Chemie - International Edition, 2012, 51, 12499-12503.	7.2	155
282	Single step emulsification for the generation of multi-component double emulsions. Soft Matter, 2012, 8, 10719.	1.2	152
283	Structures, stresses, and fluctuations in the delayed failure of colloidal gels. Soft Matter, 2012, 8, 3657.	1.2	89
284	Microfluidic synthesis of monodisperse porous microspheres with size-tunable pores. Soft Matter, 2012, 8, 10636.	1.2	62
285	Measuring the elastic modulus of microgels using microdrops. Soft Matter, 2012, 8, 10032.	1.2	18
286	Delayed Buckling and Guided Folding of Inhomogeneous Capsules. Physical Review Letters, 2012, 109, 134302.	2.9	130
287	High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab on A Chip, 2012, 12, 2881.	3.1	243
288	Droplet microfluidics for high-throughput biological assays. Lab on A Chip, 2012, 12, 2146.	3.1	854

#	Article	IF	CITATIONS
289	Drop formation in non-planar microfluidic devices. Lab on A Chip, 2012, 12, 4263.	3.1	88
290	Experimental validation of plugging during drop formation in a T-junction. Lab on A Chip, 2012, 12, 1516.	3.1	75
291	Colloidal gelation of oppositely charged particles. Soft Matter, 2012, 8, 8697.	1.2	36
292	Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter, 2012, 8, 156-164.	1.2	108
293	Controlled Synthesis of Cell-Laden Microgels by Radical-Free Gelation in Droplet Microfluidics. Journal of the American Chemical Society, 2012, 134, 4983-4989.	6.6	208
294	High throughput production of single core double emulsions in a parallelized microfluidic device. Lab on A Chip, 2012, 12, 802.	3.1	241
295	A Microfluidic Approach to Encapsulate Living Cells in Uniform Alginate Hydrogel Microparticles. Macromolecular Bioscience, 2012, 12, 946-951.	2.1	98
296	Protein Expression, Aggregation, and Triggered Release from Polymersomes as Artificial Cellâ€like Structures. Angewandte Chemie - International Edition, 2012, 51, 6416-6420.	7.2	162
297	Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber. Microfluidics and Nanofluidics, 2012, 12, 229-235.	1.0	97
298	Breakup of double emulsions in constrictions. Soft Matter, 2011, 7, 2345.	1.2	52
299	Control of non-linear elasticity in F-actin networks with microtubules. Soft Matter, 2011, 7, 902-906.	1.2	56
300	Multicompartment polymersome gel for encapsulation. Soft Matter, 2011, 7, 8762.	1.2	12
301	Dewetting-Induced Membrane Formation by Adhesion of Amphiphile-Laden Interfaces. Journal of the American Chemical Society, 2011, 133, 4420-4426.	6.6	79
302	Amphiphilic Crescent-Moon-Shaped Microparticles Formed by Selective Adsorption of Colloids. Journal of the American Chemical Society, 2011, 133, 5516-5524.	6.6	159
303	Double-emulsion drops with ultra-thin shells for capsule templates. Lab on A Chip, 2011, 11, 3162-3166.	3.1	225
304	Microfluidic Generation of Multifunctional Quantum Dot Barcode Particles. Journal of the American Chemical Society, 2011, 133, 8790-8793.	6.6	233
305	Enhanced Encapsulation of Actives in Self-Sealing Microcapsules by Precipitation in Capsule Shells. Langmuir, 2011, 27, 13988-13991.	1.6	39
306	Multiple Polymersomes for Programmed Release of Multiple Components. Journal of the American Chemical Society, 2011, 133, 15165-15171.	6.6	219

#	Article	IF	Citations
307	Controllable microfluidic production of multicomponent multiple emulsions. Lab on A Chip, 2011, 11, 1587.	3.1	199
308	Early development drug formulation on a chip: Fabrication of nanoparticles using a microfluidic spray dryer. Lab on A Chip, 2011, 11, 2362.	3.1	42
309	Elasticity of Soft Particles and Colloids near the Jamming Threshold. , 2011, , 195-206.		1
310	Microfluidics: Drug Dissolution Chip (DDC): A Microfluidic Approach for Drug Release (Small 21/2011). Small, 2011, 7, 2958-2958.	5.2	0
311	The micromechanics of threeâ€dimensional collagenâ€l gels. Complexity, 2011, 16, 22-28.	0.9	122
312	Multicompartment Polymersomes from Double Emulsions. Angewandte Chemie - International Edition, 2011, 50, 1648-1651.	7.2	245
313	Oneâ€Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices. Angewandte Chemie - International Edition, 2011, 50, 8731-8734.	7.2	118
314	Controlling droplet incubation using close-packed plug flow. Biomicrofluidics, 2011, 5, 24101.	1.2	19
315	Surface acoustic wave actuated cell sorting (SAWACS). Lab on A Chip, 2010, 10, 789.	3.1	306
316	Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space Station. Journal of Real-Time Image Processing, 2010, 5, 179-193.	2.2	27
317	Gelâ€Immobilized Colloidal Crystal Shell with Enhanced Thermal Sensitivity at Photonic Wavelengths. Advanced Materials, 2010, 22, 4998-5002.	11.1	117
318	Droplet Microfluidics for Fabrication of Non‧pherical Particles. Macromolecular Rapid Communications, 2010, 31, 108-118.	2.0	208
319	Fabrication of Tunable Spherical Colloidal Crystals Immobilized in Soft Hydrogels. Small, 2010, 6, 807-810.	5. 2	114
320	Corrugated interfaces in multiphase core-annular flow. Physics of Fluids, 2010, 22, 082002.	1.6	24
321	Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4004-4009.	3.3	959
322	Microfluidic sorting with high-speed single-layer membrane valves. Applied Physics Letters, 2010, 96, .	1.5	111
323	High-throughput injection with microfluidics using picoinjectors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19163-19166.	3.3	429
324	Droplet Based Microfluidics for Synthesis of Mesoporous Silica Microspheres. Materials Research Society Symposia Proceedings, 2010, 1272, 1.	0.1	1

#	Article	IF	CITATIONS
325	Axial and lateral particle ordering in finite Reynolds number channel flows. Physics of Fluids, 2010, 22, .	1.6	121
326	Patterning microfluidic device wettability using flow confinement. Lab on A Chip, 2010, 10, 1774.	3.1	118
327	Functional patterning of PDMS microfluidic devices using integrated chemo-masks. Lab on A Chip, 2010, 10, 1521.	3.1	28
328	Controlled fabrication of polymer microgels by polymer-analogous gelation in droplet microfluidics. Soft Matter, 2010, 6, 3184.	1.2	76
329	Janus Microgels Produced from Functional Precursor Polymers. Langmuir, 2010, 26, 14842-14847.	1.6	97
330	Microfluidic Melt Emulsification for Encapsulation and Release of Actives. ACS Applied Materials & Lamp; Interfaces, 2010, 2, 3411-3416.	4.0	127
331	Smart Microgel Capsules from Macromolecular Precursors. Journal of the American Chemical Society, 2010, 132, 6606-6609.	6.6	177
332	Capillary micromechanics: Measuring the elasticity of microscopic soft objects. Soft Matter, 2010, 6, 4550.	1.2	100
333	Measurement of nonlinear rheology of cross-linked biopolymer gels. Soft Matter, 2010, 6, 4120.	1.2	91
334	Nanomechanics of vimentin intermediate filament networks. Soft Matter, 2010, 6, 1910.	1.2	28
335	Unjamming a Polymer Glass. Science, 2009, 323, 214-215.	6.0	17
336	Janus Supraparticles by Induced Phase Separation of Nanoparticles in Droplets. Advanced Materials, 2009, 21, 1949-1953.	11.1	166
337	Highâ€Order Multiple Emulsions Formed in Poly(dimethylsiloxane) Microfluidics. Small, 2009, 5, 2030-2032.	5.2	271
338	Physical forces during collective cell migration. Nature Physics, 2009, 5, 426-430.	6.5	989
339	Janus Particles Templated from Double Emulsion Droplets Generated Using Microfluidics. Langmuir, 2009, 25, 4320-4323.	1.6	210
340	Short-time self-diffusion of nearly hard spheres at an oil–water interface. Journal of Fluid Mechanics, 2009, 618, 243-261.	1.4	55
341	Impact of inlet channel geometry on microfluidic drop formation. Physical Review E, 2009, 80, 026310.	0.8	108
342	Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab on A Chip, 2009, 9, 1850.	3.1	784

#	Article	IF	CITATIONS
343	Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab on A Chip, 2009, 9, 2625.	3.1	295
344	Beating Poisson encapsulation statistics using close-packed ordering. Lab on A Chip, 2009, 9, 2628.	3.1	162
345	Structural basis of filamin Aâ€filGAP interaction and its impairment in congenital anomalies associated with filamin A mutations. FASEB Journal, 2009, 23, 704.1.	0.2	0
346	Designer emulsions using microfluidics. Materials Today, 2008, 11, 18-27.	8.3	623
347	Eutectic Galliumâ€Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature. Advanced Functional Materials, 2008, 18, 1097-1104.	7.8	1,170
348	Colloid Surfactants for Emulsion Stabilization. Advanced Materials, 2008, 20, 3239-3243.	11.1	273
349	Double Emulsionâ€Templated Nanoparticle Colloidosomes with Selective Permeability. Advanced Materials, 2008, 20, 3498-3503.	11.1	307
350	Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms. Chemistry and Biology, 2008, 15, 427-437.	6.2	620
351	Drop-based microfluidic devices for encapsulation of single cells. Lab on A Chip, 2008, 8, 1110.	3.1	470
352	Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab on A Chip, 2008, 8, 1632.	3.1	589
353	Gelation of particles with short-range attraction. Nature, 2008, 453, 499-503.	13.7	811
354	Glass coating for PDMS microfluidic channels by sol–gel methods. Lab on A Chip, 2008, 8, 516.	3.1	266
355	Velocity fluctuations in a low-Reynolds-number fluidized bed. Journal of Fluid Mechanics, 2008, 596, 467-475.	1.4	11
356	Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. Lab on A Chip, 2008, 8, 2157.	3.1	109
357	Microfluidic Fabrication of Monodisperse Biocompatible and Biodegradable Polymersomes with Controlled Permeability. Journal of the American Chemical Society, 2008, 130, 9543-9549.	6.6	397
358	Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter, 2008, 4, 2303.	1.2	178
359	Probing nonlinear rheology with inertio-elastic oscillations. Journal of Rheology, 2008, 52, 1013-1025.	1.3	44
360	Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system. Soft Matter, 2008, 4, 1388.	1.2	65

#	Article	IF	Citations
361	Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on A Chip, 2008, 8, 1262.	3.1	444
362	The soft framework of the cellular machine. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1105-1106.	3.3	11
363	Characterizing the Non-Linear Rheology of Biopolymer Networks Using Inertio-Elastic Oscillations. AIP Conference Proceedings, 2008, , .	0.3	1
364	Nonequilibrium Microtubule Fluctuations in a Model Cytoskeleton. Physical Review Letters, 2008, 100, 118104.	2.9	152
365	Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics. MRS Bulletin, 2007, 32, 702-708.	1.7	296
366	Velocity fluctuations of initially stratified sedimenting spheres. Physics of Fluids, 2007, 19, 113304.	1.6	14
367	Dripping to Jetting Transitions in Coflowing Liquid Streams. Physical Review Letters, 2007, 99, 094502.	2.9	731
368	Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers. Applied Physics Letters, 2007, 91, .	1.5	18
369	Target-locking acquisition with real-time confocal (TARC) microscopy. Optics Express, 2007, 15, 8702.	1.7	46
370	The cell as a material. Current Opinion in Cell Biology, 2007, 19, 101-107.	2.6	403
370 371	The cell as a material. Current Opinion in Cell Biology, 2007, 19, 101-107. Novel Defect Structures in Nematic Liquid Crystal Shells. Physical Review Letters, 2007, 99, 157801.	2.6	403
371	Novel Defect Structures in Nematic Liquid Crystal Shells. Physical Review Letters, 2007, 99, 157801. Rheology and microrheology of a microstructured fluid: The gellan gum case. Journal of Rheology,	2.9	207
371 372	Novel Defect Structures in Nematic Liquid Crystal Shells. Physical Review Letters, 2007, 99, 157801. Rheology and microrheology of a microstructured fluid: The gellan gum case. Journal of Rheology, 2007, 51, 851-865.	2.9	207 76
371 372 373	Novel Defect Structures in Nematic Liquid Crystal Shells. Physical Review Letters, 2007, 99, 157801. Rheology and microrheology of a microstructured fluid: The gellan gum case. Journal of Rheology, 2007, 51, 851-865. Viscoelastic Properties of Microtubule Networks. Macromolecules, 2007, 40, 7714-7720. Fabrication of Monodisperse Gel Shells and Functional Microgels in Microfluidic Devices.	2.9 1.3 2.2	2077699
371 372 373	Novel Defect Structures in Nematic Liquid Crystal Shells. Physical Review Letters, 2007, 99, 157801. Rheology and microrheology of a microstructured fluid: The gellan gum case. Journal of Rheology, 2007, 51, 851-865. Viscoelastic Properties of Microtubule Networks. Macromolecules, 2007, 40, 7714-7720. Fabrication of Monodisperse Gel Shells and Functional Microgels in Microfluidic Devices. Angewandte Chemie - International Edition, 2007, 46, 1819-1822. Controllable Monodisperse Multiple Emulsions. Angewandte Chemie - International Edition, 2007, 46,	2.9 1.3 2.2 7.2	207 76 99 271
371 372 373 374	Novel Defect Structures in Nematic Liquid Crystal Shells. Physical Review Letters, 2007, 99, 157801. Rheology and microrheology of a microstructured fluid: The gellan gum case. Journal of Rheology, 2007, 51, 851-865. Viscoelastic Properties of Microtubule Networks. Macromolecules, 2007, 40, 7714-7720. Fabrication of Monodisperse Gel Shells and Functional Microgels in Microfluidic Devices. Angewandte Chemie - International Edition, 2007, 46, 1819-1822. Controllable Monodisperse Multiple Emulsions. Angewandte Chemie - International Edition, 2007, 46, 8970-8974. Monodisperse Thermoresponsive Microgels with Tunable Volumeâ€Phase Transition Kinetics. Advanced	2.9 1.3 2.2 7.2	207 76 99 271 621

#	Article	IF	Citations
379	Polarization dependent Bragg diffraction and electro-optic switching of three-dimensional assemblies of nematic liquid crystal droplets. Applied Physics Letters, 2006, 88, 121911.	1.5	18
380	Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Applied Physics Letters, 2006, 88, 264105.	1.5	261
381	Optical manipulation of liquid crystal drops: Application towards all-optical tunable photonic devices. , 2006, , .		0
382	Dewetting Instability during the Formation of Polymersomes from Block-Copolymer-Stabilized Double Emulsions. Langmuir, 2006, 22, 4457-4461.	1.6	155
383	Synthesis of Nonspherical Colloidal Particles with Anisotropic Properties. Journal of the American Chemical Society, 2006, 128, 14374-14377.	6.6	409
384	Microfluidic Assembly of Homogeneous and Janus Colloid-Filled Hydrogel Granules. Langmuir, 2006, 22, 8618-8622.	1.6	251
385	Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters, 2006, 88, 024104.	1.5	380
386	Electric Control of Droplets in Microfluidic Devices. Angewandte Chemie - International Edition, 2006, 45, 2556-2560.	7.2	617
387	Direct imaging of repulsive and attractive colloidal glasses. Journal of Chemical Physics, 2006, 125, 074716.	1.2	61
388	Fluids of Clusters in Attractive Colloids. Physical Review Letters, 2006, 96, 028306.	2.9	200
389	Monodisperse Double Emulsions Generated from a Microcapillary Device. Science, 2005, 308, 537-541.	6.0	1,923
390	Optically Anisotropic Colloids of Controllable Shape. Advanced Materials, 2005, 17, 680-684.	11.1	76
391	Time-Dependent Strength of Colloidal Gels. Physical Review Letters, 2005, 95, 048302.	2.9	73
392	Charge Stabilization in Nonpolar Solvents. Langmuir, 2005, 21, 4881-4887.	1.6	274
393	Scaling of F-Actin Network Rheology to Probe Single Filament Elasticity and Dynamics. Physical Review Letters, 2004, 93, 188102.	2.9	155
394	PHYSICS: Packing in the Spheres. Science, 2004, 303, 968-969.	6.0	135
395	A new device for the generation of microbubbles. Physics of Fluids, 2004, 16, 2828-2834.	1.6	99
396	Geometrically Mediated Breakup of Drops in Microfluidic Devices. Physical Review Letters, 2004, 92, 054503.	2.9	969

#	Article	lF	CITATIONS
397	A model for velocity fluctuations in sedimentation. Journal of Fluid Mechanics, 2004, 501, 71-104.	1.4	118
398	Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9636-9641.	3.3	178
399	Elastic Behavior of Cross-Linked and Bundled Actin Networks. Science, 2004, 304, 1301-1305.	6.0	1,090
400	Like-charged particles at liquid interfaces. Nature, 2003, 424, 1014-1014.	13.7	25
401	Phase switching of ordered arrays of liquid crystal emulsions. Applied Physics Letters, 2003, 82, 2610-2612.	1.5	56
402	Electrostatics for Exploring the Nature of Water Adsorption on the Laponite Sheets' Surface. Journal of Physical Chemistry B, 2003, 107, 8946-8952.	1.2	36
403	Production of Unilamellar Vesicles Using an Inverted Emulsion. Langmuir, 2003, 19, 2870-2879.	1.6	483
404	Engineering asymmetric vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10718-10721.	3.3	418
405	Nonuniversal Velocity Fluctuations of Sedimenting Particles. Physical Review Letters, 2002, 89, 054501.	2.9	80
406	Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles. Science, 2002, 298, 1006-1009.	6.0	1,943
407	Three-dimensional confocal microscopy of colloids. Applied Optics, 2001, 40, 4152.	2.1	218
408	Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization. Science, 2001, 292, 258-262.	6.0	925
409	Patterned Colloidal Coating Using Adhesive Emulsions. Langmuir, 2001, 17, 2275-2277.	1.6	9
410	Memories of paste. Nature, 2001, 410, 32-33.	13.7	20
411	Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Physical Review E, 2001, 64, 061506.	0.8	264
412	Scaling of the Viscoelasticity of Weakly Attractive Particles. Physical Review Letters, 2000, 85, 449-452.	2.9	328
413	Velocity Fluctuations in Fluidized Suspensions Probed by Ultrasonic Correlation Spectroscopy. Physical Review Letters, 2000, 85, 453-456.	2.9	72
414	Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition. Science, 2000, 287, 627-631.	6.0	1,608

#	Article	IF	CITATIONS
415	Rheology of F-actin solutions determined from thermally driven tracer motion. Journal of Rheology, 2000, 44, 917-928.	1.3	73
416	Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream. Langmuir, 2000, 16, 347-351.	1.6	576
417	Two-Point Microrheology of Inhomogeneous Soft Materials. Physical Review Letters, 2000, 85, 888-891.	2.9	581
418	Characterization of niobium point contacts showing Josephson effects in the far infrared. Journal of Applied Physics, 1978, 49, 4873-4880.	1.1	47
419	Niobium pointâ€contact Josephsonâ€junction behavior at 604 GHz. Applied Physics Letters, 1977, 31, 227-229.	1.5	27