Mojtaba Sadegh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031210/publications.pdf

Version: 2024-02-01

65 3,330 31 papers citations h-index

66 66 3104
all docs docs citations times ranked citing authors

55

g-index

#	Article	IF	Citations
1	Copulas for hydroclimatic analysis: A practiceâ€oriented overview. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	6.5	31
2	Increasing Heatâ€6tress Inequality in a Warming Climate. Earth's Future, 2022, 10, .	6.3	31
3	Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis. Water (Switzerland), 2022, 14, 949.	2.7	35
4	Discrepancies in changes in precipitation characteristics over the contiguous United States based on six daily gridded precipitation datasets. Weather and Climate Extremes, 2022, 36, 100433.	4.1	3
5	Unconventional water resources: Global opportunities and challenges. Science of the Total Environment, 2022, 827, 154429.	8.0	35
6	Anthropogenic stressors compound climate impacts on inland lake dynamics: The case of Hamun Lakes. Science of the Total Environment, 2022, 829, 154419.	8.0	12
7	A Systematic Multiple Studies Review of Low-Income, First-Generation, and Underrepresented, STEM-Degree Support Programs: Emerging Evidence-Based Models and Recommendations. Education Sciences, 2022, 12, 333.	2.6	8
8	A deep learning image segmentation model for agricultural irrigation system classification. Computers and Electronics in Agriculture, 2022, 198, 106977.	7.7	17
9	Coevolution of machine learning and processâ€based modelling to revolutionize Earth and environmental sciences: A perspective. Hydrological Processes, 2022, 36, .	2.6	20
10	Multi-objective conflict resolution optimization model for reservoir's selective depth water withdrawal considering water quality. Environmental Science and Pollution Research, 2021, 28, 3035-3050.	5.3	11
11	Design of a high-coverage ground-based CO2 monitoring layout using a novel information theory-based optimization model. Environmental Monitoring and Assessment, 2021, 193, 150.	2.7	1
12	Compound Extremes Drive the Western Oregon Wildfires of September 2020. Geophysical Research Letters, 2021, 48, e2021GL092520.	4.0	53
13	Anthropogenic Drought: Definition, Challenges, and Opportunities. Reviews of Geophysics, 2021, 59, e2019RG000683.	23.0	126
14	Pooling Data Improves Multimodel IDF Estimates over Median-Based IDF Estimates: Analysis over the Susquehanna and Florida. Journal of Hydrometeorology, 2021, 22, 971-995.	1.9	12
15	Warming enabled upslope advance in western US forest fires. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	83
16	Anthropogenic depletion of Iranâ \in TM s aquifers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	82
17	Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling and Software, 2021, 140, 105030.	4.5	38
18	Polar Ice as an Unconventional Water Resource: Opportunities and Challenges. Water (Switzerland), 2021, 13, 3220.	2.7	9

#	Article	IF	CITATIONS
19	Multi-type assessment of global droughts and teleconnections. Weather and Climate Extremes, 2021, 34, 100402.	4.1	8
20	Optimizing chute-flip bucket system based on meta-modelling approach. Canadian Journal of Civil Engineering, 2020, 47, 584-595.	1.3	5
21	Pressure sensor placement in water distribution networks for leak detection using a hybrid information-entropy approach. Information Sciences, 2020, 516, 56-71.	6.9	34
22	Probabilistic hazard assessment of contaminated sediment in rivers. Science of the Total Environment, 2020, 703, 134875.	8.0	11
23	The mirage water concept and an index-based approach to quantify causes of hydrological changes in semi-arid regions. Hydrological Sciences Journal, 2020, 65, 311-324.	2.6	19
24	Quantifying increased fire risk in California in response to different levels of warming and drying. Stochastic Environmental Research and Risk Assessment, 2020, 34, 2023-2031.	4.0	14
25	A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Science Advances, 2020, 6, .	10.3	148
26	A novel dynamic hydrant flushing framework facilitated by categorizing contamination events. Urban Water Journal, 2020, 17, 199-211.	2.1	7
27	A novel hybrid entropy-clustering approach for optimal placement of pressure sensors for leakage detection in water distribution systems under uncertainty. Urban Water Journal, 2020, 17, 185-198.	2.1	15
28	A multi-objective optimal allocation of treated wastewater in urban areas using leader-follower game. Journal of Cleaner Production, 2020, 267, 122189.	9.3	21
29	Experimental study and numerical verification of silted-up dam break. Journal of Hydrology, 2020, 590, 125267.	5.4	18
30	Climate Extremes and Compound Hazards in a Warming World. Annual Review of Earth and Planetary Sciences, 2020, 48, 519-548.	11.0	330
31	A Universal Model of Unsaturated Hydraulic Conductivity With Complementary Adsorptive and Diffusive Process Components. Water Resources Research, 2020, 56, e2019WR025884.	4.2	4
32	Changes in the exposure of Californiaâ∈™s levee-protected critical infrastructure to flooding hazard in a warming climate. Environmental Research Letters, 2020, 15, 064032.	5.2	14
33	Data and analysis toolbox for modeling the nexus of food, energy, and water. Sustainable Cities and Society, 2020, 61, 102281.	10.4	19
34	Increasing concurrence of wildfire drivers tripled megafire critical danger days in Southern California between1982 and 2018. Environmental Research Letters, 2020, 15, 104002.	5.2	40
35	A dataset on human perception of and response to wildfire smoke. Scientific Data, 2019, 6, 229.	5. 3	8
36	A game theoretical low impact development optimization model for urban storm water management. Journal of Cleaner Production, 2019, 241, 118323.	9.3	44

#	Article	IF	CITATIONS
37	Heat wave Intensity Duration Frequency Curve: A Multivariate Approach for Hazard and Attribution Analysis. Scientific Reports, 2019, 9, 14117.	3.3	46
38	A generalized framework for process-informed nonstationary extreme value analysis. Advances in Water Resources, 2019, 130, 270-282.	3.8	56
39	A fuzzy multi-objective optimization approach for treated wastewater allocation. Environmental Monitoring and Assessment, 2019, 191, 468.	2.7	11
40	A Multi-Model Nonstationary Rainfall-Runoff Modeling Framework: Analysis and Toolbox. Water Resources Management, 2019, 33, 3011-3024.	3.9	18
41	A fuzzy multi-stakeholder socio-optimal model for water and waste load allocation. Environmental Monitoring and Assessment, 2019, 191, 359.	2.7	17
42	A Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought Condition. Water Resources Management, 2019, 33, 1999-2014.	3.9	33
43	Climateâ€Induced Changes in the Risk of Hydrological Failure of Major Dams in California. Geophysical Research Letters, 2019, 46, 2130-2139.	4.0	48
44	A robust decision support leader-follower framework for design of contamination warning system in water distribution network. Journal of Cleaner Production, 2019, 214, 666-673.	9.3	32
45	Multihazard simulation for coastal flood mapping: Bathtub versus numerical modelling in an open estuary, Eastern Canada. Journal of Flood Risk Management, 2019, 12, .	3.3	42
46	Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change, 2019, 152, 379-391.	3.6	84
47	The Quest for Hydrological Signatures: Effects of Data Transformation on Bayesian Inference of Watershed Models. Water Resources Management, 2018, 32, 1867-1881.	3.9	24
48	Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework. Environmental Modelling and Software, 2018, 104, 215-235.	4.5	29
49	Optimal joint deployment of flow and pressure sensors for leak identification in water distribution networks. Urban Water Journal, 2018, 15, 837-846.	2.1	9
50	Developing a non-cooperative optimization model for water and crop area allocation based on leader-follower game. Journal of Hydrology, 2018, 567, 51-59.	5.4	33
51	How do natural hazards cascade to cause disasters?. Nature, 2018, 561, 458-460.	27.8	165
52	A new normal for streamflow in California in a warming climate: Wetter wet seasons and drier dry seasons. Journal of Hydrology, 2018, 567, 203-211.	5.4	42
53	A hybrid clustering-fusion methodology for land subsidence estimation. Natural Hazards, 2018, 94, 905-926.	3.4	22
54	Multihazard Scenarios for Analysis of Compound Extreme Events. Geophysical Research Letters, 2018, 45, 5470-5480.	4.0	139

#	Article	IF	CITATIONS
55	Optimal and objective placement of sensors in water distribution systems using information theory. Water Research, 2018, 143, 218-228.	11.3	48
56	Stochastic modeling of suspended sediment load in alluvial rivers. Advances in Water Resources, 2018, 119, 188-196.	3.8	32
57	Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts. Environmental Research Letters, 2018, 13, 084010.	5.2	82
58	GHWR, a multi-method global heatwave and warm-spell record and toolbox. Scientific Data, 2018, 5, 180206.	5.3	46
59	Multivariate <scp>C</scp> opula <scp>A</scp> nalysis <scp>T</scp> oolbox (MvCAT): Describing dependence and underlying uncertainty using a <scp>B</scp> ayesian framework. Water Resources Research, 2017, 53, 5166-5183.	4.2	226
60	Increasing probability of mortality during Indian heat waves. Science Advances, 2017, 3, e1700066.	10.3	247
61	The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM _(ABC) . Water Resources Research, 2015, 51, 9207-9231.	4.2	38
62	Approximate Bayesian Computation using Markov Chain Monte Carlo simulation: DREAM _(ABC) . Water Resources Research, 2014, 50, 6767-6787.	4.2	92
63	Toward diagnostic model calibration and evaluation: Approximate Bayesian computation. Water Resources Research, 2013, 49, 4335-4345.	4.2	123
64	Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core. Water Resources Management, 2011, 25, 2543-2573.	3.9	59
65	Optimal Inter-Basin Water Allocation Using Crisp and Fuzzy Shapley Games. Water Resources Management, 2010, 24, 2291-2310.	3.9	120