Chiara Francavilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8031114/publications.pdf

Version: 2024-02-01

236925 315739 2,458 39 25 38 citations h-index g-index papers 45 45 45 4948 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biology, 2022, 12, 210373.	3.6	21
2	Data integration and mechanistic modelling for breast cancer biology: current state and future directions. Current Opinion in Endocrine and Metabolic Research, 2022, , 100350.	1.4	6
3	SubcellulaRVis: a web-based tool to simplify and visualise subcellular compartment enrichment. Nucleic Acids Research, 2022, 50, W718-W725.	14.5	7
4	Oxidative stress from DGAT1 oncoprotein inhibition in melanoma suppresses tumor growth when ROS defenses are also breached. Cell Reports, 2022, 39, 110995.	6.4	19
5	Proteomic investigation of Cbl and Cbl-b in neuroblastoma cell differentiation highlights roles for SHP-2 and CDK16. IScience, 2021, 24, 102321.	4.1	8
6	Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells, 2021, 10, 1201.	4.1	40
7	Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs. EMBO Journal, 2021, 40, e107182.	7.8	12
8	Using Multilayer Heterogeneous Networks to Infer Functions of Phosphorylated Sites. Journal of Proteome Research, 2021, 20, 3532-3548.	3.7	4
9	Discovery of a Gatekeeper Residue in the C-Terminal Tail of the Extracellular Signal-Regulated Protein Kinase 5 (ERK5). International Journal of Molecular Sciences, 2020, 21, 929.	4.1	9
10	Number and brightness analysis in live cells reveals that NCAM and FGF2 elicit different assembly and dynamics of FGFR1. Journal of Cell Science, 2019, 132, .	2.0	13
11	Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature, 2019, 575, 355-360.	27.8	64
12	Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell, 2019, 179, 543-560.e26.	28.9	65
13	†Omics Approaches to Explore the Breast Cancer Landscape. Frontiers in Cell and Developmental Biology, 2019, 7, 395.	3.7	39
14	Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdgf Receptor Signaling. Cell Reports, 2018, 22, 2784-2796.	6.4	51
15	Regulation of FGF10 Signaling in Development and Disease. Frontiers in Genetics, 2018, 9, 500.	2.3	56
16	Integrated proximal proteomics reveals IRS2 as a determinant of cell survival in ALK-driven neuroblastoma. Science Signaling, 2018, 11, .	3.6	33
17	Cylindromatosis Tumor Suppressor Protein (CYLD) Deubiquitinase is Necessary for Proper Ubiquitination and Degradation of the Epidermal Growth Factor Receptor. Molecular and Cellular Proteomics, 2017, 16, 1433-1446.	3.8	15
18	Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer. Cell Reports, 2017, 18, 3242-3256.	6.4	81

#	Article	IF	Citations
19	Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nature Structural and Molecular Biology, 2016, 23, 608-618.	8.2	98
20	Systemsâ€wide analysis of <scp>BCR</scp> signalosomes and downstream phosphorylation and ubiquitylation. Molecular Systems Biology, 2015, 11, 810.	7.2	119
21	Temporal proteomics of NGF-TrkA signaling identifies an inhibitory role for the E3 ligase Cbl-b in neuroblastoma cell differentiation. Science Signaling, 2015, 8, ra40.	3.6	64
22	Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Review of Proteomics, 2015, 12, 469-487.	3.0	70
23	Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4066-75.	7.1	251
24	B-lymphoid tyrosine kinase (Blk) is an oncogene and a potential target for therapy with dasatinib in cutaneous T-cell lymphoma (CTCL). Leukemia, 2014, 28, 2109-2112.	7.2	39
25	Off-Line High-pH Reversed-Phase Fractionation for In-Depth Phosphoproteomics. Journal of Proteome Research, 2014, 13, 6176-6186.	3.7	263
26	Uncovering SUMOylation Dynamics during Cell-Cycle Progression Reveals FoxM1 as a Key Mitotic SUMO Target Protein. Molecular Cell, 2014, 53, 1053-1066.	9.7	153
27	SILAC-Based Temporal Phosphoproteomics. Methods in Molecular Biology, 2014, 1188, 125-148.	0.9	10
28	Genomic and Proteomic Analyses of Prdm5 Reveal Interactions with Insulator Binding Proteins in Embryonic Stem Cells. Molecular and Cellular Biology, 2013, 33, 4504-4516.	2.3	29
29	Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs. Molecular Cell, 2013, 51, 707-722.	9.7	145
30	TIMP-1 Increases Expression and Phosphorylation of Proteins Associated with Drug Resistance in Breast Cancer Cells. Journal of Proteome Research, 2013, 12, 4136-4151.	3.7	36
31	In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of \hat{I}^2 -Adrenergic Receptor Signaling. Science Signaling, 2013, 6, rs11.	3.6	164
32	TIRFM-N&B Analysis of FGFR1 Clustering in Response to NCAM and FGF2. Biophysical Journal, 2012, 102, 192a.	0.5	0
33	Pinpointing Phosphorylation Sites: Quantitative Filtering and a Novel Site-specific x-lon Fragment. Journal of Proteome Research, 2011, 10, 2937-2948.	3.7	27
34	Inactivation of Junctional Adhesion Molecule-A Enhances Antitumoral Immune Response by Promoting Dendritic Cell and T Lymphocyte Infiltration. Cancer Research, 2010, 70, 1759-1765.	0.9	25
35	The functional role of cell adhesion molecules in tumor angiogenesis. Seminars in Cancer Biology, 2009, 19, 298-309.	9.6	77
36	The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking. Journal of Cell Biology, 2009, 187, 1101-1116.	5.2	121

#	Article	IF	CITATIONS
37	Immunological applications of single-domain llama recombinant antibodies isolated from a naÃ-ve library. Protein Engineering, Design and Selection, 2009, 22, 273-280.	2.1	135
38	Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. Journal of Cell Science, 2007, 120, 4388-4394.	2.0	79
39	Oxidative Stress From DGAT1 Oncoprotein Inhibition Suppresses Tumor Growth When ROS Defenses Are Also Breached. SSRN Electronic Journal, 0, , .	0.4	0