Da-Zhi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8030773/publications.pdf

Version: 2024-02-01

102 13,599 4
papers citations h-is

45 96
h-index g-index

104 104 all docs citations

104 times ranked 15196 citing authors

#	Article	IF	CITATIONS
1	Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation. Cardiovascular Research, 2023, 119, 221-235.	3.8	5
2	Cardiac ISL1-Interacting Protein, a Cardioprotective Factor, Inhibits the Transition From Cardiac Hypertrophy to Heart Failure. Frontiers in Cardiovascular Medicine, 2022, 9, 857049.	2.4	0
3	Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. Molecular Therapy - Nucleic Acids, 2021, 23, 406-417.	5.1	17
4	Long noncoding RNA Cfast regulates cardiac fibrosis. Molecular Therapy - Nucleic Acids, 2021, 23, 377-392.	5.1	33
5	miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation. Metabolism: Clinical and Experimental, 2021, 117, 154723.	3.4	15
6	Application of CRISPR-Cas9 gene editing for congenital heart disease. Clinical and Experimental Pediatrics, 2021, 64, 269-279.	2.2	7
7	LncRNA LncHrt preserves cardiac metabolic homeostasis and heart function by modulating the LKB1-AMPK signaling pathway. Basic Research in Cardiology, 2021, 116, 48.	5.9	27
8	Cardiac CIP protein regulates dystrophic cardiomyopathy. Molecular Therapy, 2021, , .	8.2	7
9	Transcriptome landscape of the late-stage alcohol-induced osteonecrosis of the human femoral head. Bone, 2021, 150, 116012.	2.9	4
10	Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Seminars in Cell and Developmental Biology, 2021, 118, 150-162.	5.0	12
11	Decreased miR-497-5p Suppresses IL-6 Induced Atrophy in Muscle Cells. Cells, 2021, 10, 3527.	4.1	8
12	Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation. Journal of Clinical Investigation, 2021, 131, .	8.2	44
13	tRNA-Derived Small RNAs and Their Potential Roles in Cardiac Hypertrophy. Frontiers in Pharmacology, 2020, 11, 572941.	3.5	32
14	Tiny Regulators of Massive Tissue: MicroRNAs in Skeletal Muscle Development, Myopathies, and Cancer Cachexia. Frontiers in Oncology, 2020, 10, 598964.	2.8	23
15	Loss of Phosphatase and Tensin Homolog Promotes Cardiomyocyte Proliferation and Cardiac Repair After Myocardial Infarction. Circulation, 2020, 142, 2196-2199.	1.6	23
16	Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nature Communications, 2020, 11, 3984.	12.8	24
17	Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. International Journal of Molecular Sciences, 2020, 21, 5424.	4.1	10
18	Regulation of myonuclear positioning and muscle function by the skeletal muscle-specific CIP protein. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19254-19265.	7.1	32

#	Article	IF	Citations
19	Transient exposure to miRâ€203 enhances the differentiation capacity of established pluripotent stem cells. EMBO Journal, 2020, 39, e104324.	7.8	16
20	Intercalated disc protein $Xin\hat{l}^2$ is required for Hippo-YAP signaling in the heart. Nature Communications, 2020, 11, 4666.	12.8	16
21	Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2020, 13, e000062.	3.6	61
22	aYAP modRNA reduces cardiac inflammation and hypertrophy in a murine ischemia-reperfusion model. Life Science Alliance, 2020, 3, e201900424.	2.8	24
23	Deletion of miRNA-22 Induces Cardiac Hypertrophy in Females but Attenuates Obesogenic Diet-Mediated Metabolic Disorders Cellular Physiology and Biochemistry, 2020, 54, 1199-1217.	1.6	7
24	Regulation of Cholesterol Homeostasis by a Novel Long Non-coding RNA LASER. Scientific Reports, 2019, 9, 7693.	3.3	18
25	Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nature Communications, 2019, 10, 1802.	12.8	190
26	LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. ELife, 2019, 8, .	6.0	17
27	Abstract 895: The Role of Poly(rC)-Binding Protein-1 in Heart Development. Circulation Research, 2019, 125, .	4.5	0
28	Abstract 919: Intercalated Disk Protein Xin-beta is Required for the Hippo/YAP Signaling in the Heart. Circulation Research, 2019, 125, .	4.5	0
29	miR-22 in Smooth Muscle Cells. Circulation, 2018, 137, 1842-1845.	1.6	14
30	Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation. Circulation Research, 2018, 122, 74-87.	4.5	89
31	Non-coding RNA in Ischemic and Non-ischemic Cardiomyopathy. Current Cardiology Reports, 2018, 20, 115.	2.9	15
32	Non-coding RNAs and exercise: pathophysiological role and clinical application in the cardiovascular system. Clinical Science, 2018, 132, 925-942.	4.3	24
33	DELETION OF MICRORNAâ€22 ENHANCES THERMOGENIC GENE EXPRESSION IN WHITE ADIPOSE TISSUE OF OBESE MICE. FASEB Journal, 2018, 32, .	0.5	0
34	Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts. Journal of Biological Chemistry, 2017, 292, 9540-9550.	3.4	16
35	Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy. Clinical Science, 2017, 131, 2885-2900.	4.3	40
36	How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cellular and Molecular Life Sciences, 2017, 74, 983-1000.	5.4	54

#	Article	IF	Citations
37	EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. ELife, 2017, 6, .	6.0	44
38	(MYO)SLIDing Our Way Into the Vascular Pool of Long Noncoding RNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2033-2034.	2.4	2
39	Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovascular Research, 2016, 112, 543-554.	3.8	64
40	Regulation of Skeletal Muscle by microRNAs. , 2016, 6, 1279-1294.		76
41	Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts. Journal of Visualized Experiments, 2016, , .	0.3	8
42	Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle. PLoS ONE, 2016, 11, e0155349.	2.5	9
43	Mystery of Trbp, tale of a RBP in the miRNA pathway. Cell Cycle, 2015, 14, 3007-3008.	2.6	6
44	Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases. BioMed Research International, 2015, 2015, 1-17.	1.9	82
45	Novel Roles of GATA4/6 in the Postnatal Heart Identified through Temporally Controlled, Cardiomyocyte-Specific Gene Inactivation by Adeno-Associated Virus Delivery of Cre Recombinase. PLoS ONE, 2015, 10, e0128105.	2.5	39
46	Trbp regulates heart function through microRNA-mediated Sox6 repression. Nature Genetics, 2015, 47, 776-783.	21.4	53
47	<i> Pi3kcb Links Hippo-YAP and Pl3K-AKT Signaling Pathways to Promote Cardiomyocyte Proliferation and Survival. Circulation Research, 2015, 116, 35-45.</i>	4.5	237
48	Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis. Journal of Clinical Investigation, 2015, 125, 4122-4134.	8.2	42
49	Crystallin-αB Regulates Skeletal Muscle Homeostasis via Modulation of Argonaute2 Activity. Journal of Biological Chemistry, 2014, 289, 17240-17248.	3.4	32
50	Non-Coding RNAs Including miRNAs and IncRNAs in Cardiovascular Biology and Disease. Cells, 2014, 3, 883-898.	4.1	117
51	Cardiac-Specific YAP Activation Improves Cardiac Function and Survival in an Experimental Murine MI Model. Circulation Research, 2014, 115, 354-363.	4.5	324
52	Loss of MicroRNA-155 Protects the Heart From Pathological Cardiac Hypertrophy. Circulation Research, 2014, 114, 1585-1595.	4.5	148
53	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 2014, 20, 616-623.	30.7	733
54	miR-22 in cardiac remodeling and disease. Trends in Cardiovascular Medicine, 2014, 24, 267-272.	4.9	76

#	Article	IF	CITATIONS
55	The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes and Diseases, 2014, 1, 18-39.	3.4	23
56	LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity. Circulation, 2014, 130, 1452-1465.	1.6	425
57	An Epigenetic "LINK(RNA)―to Pathological Cardiac Hypertrophy. Cell Metabolism, 2014, 20, 555-557.	16.2	18
58	Generation of a <scp><i>C</i></scp> <i>re</i> knockâ€in into the <scp><i>M</i></scp> <i>yocardin</i> locus to mark early cardiac and smooth muscle cell lineages. Genesis, 2014, 52, 879-887.	1.6	4
59	microRNAs in cardiac regeneration and cardiovascular disease. Science China Life Sciences, 2013, 56, 907-913.	4.9	17
60	Build A Braveheart: The Missing Linc (RNA). Circulation Research, 2013, 112, 1532-1534.	4.5	18
61	MicroRNA-22 Regulates Cardiac Hypertrophy and Remodeling in Response to Stress. Circulation Research, 2013, 112, 1234-1243.	4.5	256
62	mir-17–92 Cluster Is Required for and Sufficient to Induce Cardiomyocyte Proliferation in Postnatal and Adult Hearts. Circulation Research, 2013, 112, 1557-1566.	4.5	348
63	Response to Letter by Burgon. Circulation Research, 2012, 111, .	4.5	0
64	CIP, a Cardiac Isl1-Interacting Protein, Represses Cardiomyocyte Hypertrophy. Circulation Research, 2012, 110, 818-830.	4.5	28
65	microRNAs in cardiovascular development. Journal of Molecular and Cellular Cardiology, 2012, 52, 949-957.	1.9	90
66	MicroRNAs in Heart Development. Current Topics in Developmental Biology, 2012, 100, 279-317.	2.2	75
67	Xin proteins and intercalated disc maturation, signaling and diseases. Frontiers in Bioscience - Landmark, 2012, 17, 2566.	3.0	43
68	â€~CArG'ing for microRNAs. Gastroenterology, 2011, 141, 24-27.	1.3	1
69	Synergistic Activation of Cardiac Genes by Myocardin and Tbx5. PLoS ONE, 2011, 6, e24242.	2.5	35
70	Application of MicroRNA in Cardiac and Skeletal Muscle Disease Gene Therapy. Methods in Molecular Biology, 2011, 709, 197-210.	0.9	10
71	Transgenic overexpression of miR-133a in skeletal muscle. BMC Musculoskeletal Disorders, 2011, 12, 115.	1.9	47
72	MicroRNAs in cardiomyocyte development. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 183-190.	6.6	84

#	Article	IF	CITATIONS
73	Induction of MicroRNA-1 by Myocardin in Smooth Muscle Cells Inhibits Cell Proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 368-375.	2.4	121
74	miR-155 Inhibits Expression of the MEF2A Protein to Repress Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2011, 286, 35339-35346.	3.4	91
75	MicroRNAs in Cardiac Development and Remodeling. Pediatric Cardiology, 2010, 31, 357-362.	1.3	14
76	MicroRNAs in Cardiac Remodeling and Disease. Journal of Cardiovascular Translational Research, 2010, 3, 212-218.	2.4	26
77	Loss of MicroRNAs in Neural Crest Leads to Cardiovascular Syndromes Resembling Human Congenital Heart Defects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2575-2586.	2.4	75
78	microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. Journal of Cell Biology, 2010, 190, 867-879.	5.2	530
79	The Emerging Role of MicroRNAs as a Therapeutic Target for Cardiovascular Disease. BioDrugs, 2010, 24, 147-155.	4.6	10
80	MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. Journal of Clinical Investigation, 2009, 119, 2772-2786.	8.2	756
81	microRNAs and muscle disorders. Journal of Cell Science, 2009, 122, 13-20.	2.0	136
82	Taking microRNAs to heart. Trends in Molecular Medicine, 2008, 14, 254-260.	6.7	106
83	Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2111-2116.	7.1	540
84	Myocardin inhibits cellular proliferation by inhibiting NF- \hat{l}° B(p65)-dependent cell cycle progression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3362-3367.	7.1	96
85	Muscling Through the microRNA World. Experimental Biology and Medicine, 2008, 233, 131-138.	2.4	120
86	The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. Journal of Clinical Investigation, 2008, 118, 124-132.	8.2	220
87	Myocardin is a bifunctional switch for smooth versus skeletal muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16570-16575.	7.1	84
88	Loss of mXin \hat{l}_{\pm} , an intercalated disk protein, results in cardiac hypertrophy and cardiomyopathy with conduction defects. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2680-H2692.	3.2	65
89	Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 2007, 42, 1137-1141.	1.9	417
90	The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006, 38, 228-233.	21.4	2,515

#	Article	IF	CITATION
91	Micro or Mega: How Important are microRNAs in Muscle?. Cell Cycle, 2006, 5, 1015-1016.	2.6	7
92	Myocardin Induces Cardiomyocyte Hypertrophy. Circulation Research, 2006, 98, 1089-1097.	4.5	137
93	Bone Morphogenetic Protein Signaling Modulates Myocardin Transactivation of Cardiac Genes. Circulation Research, 2005, 97, 992-1000.	4.5	47
94	Modulation of Smooth Muscle Gene Expression by Association of Histone Acetyltransferases and Deacetylases with Myocardin. Molecular and Cellular Biology, 2005, 25, 364-376.	2.3	165
95	Transcriptional mechanisms of congenital heart disease. Drug Discovery Today Disease Mechanisms, 2005, 2, 33-38.	0.8	8
96	Target Gene-Specific Modulation of Myocardin Activity by GATA Transcription Factors. Molecular and Cellular Biology, 2004, 24, 8519-8528.	2.3	52
97	Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature, 2004, 428, 185-189.	27.8	511
98	Control of smooth muscle development by the myocardin family of transcriptional coactivators. Current Opinion in Genetics and Development, 2004, 14, 558-566.	3.3	189
99	The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9366-9370.	7.1	322
100	Myocardin is a master regulator of smooth muscle gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7129-7134.	7.1	465
101	Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14855-14860.	7.1	429
102	Activation of Cardiac Gene Expression by Myocardin, a Transcriptional Cofactor for Serum Response Factor. Cell, 2001, 105, 851-862.	28.9	806