Masashi Mukohda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8030656/publications.pdf

Version: 2024-02-01

471509 552781 45 828 17 26 citations h-index g-index papers 46 46 46 1188 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovascular Research, 2021, 117, 308-319.	3.8	20
2	Streptolysin O: a novel mediator of endothelial dysfunction. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-O-D3-2.	0.0	0
3	Anti-inflammatory mechanisms of the vascular smooth muscle PPAR \hat{I}^3 . Journal of Smooth Muscle Research, 2021, 57, 1-7.	1.2	5
4	Streptococcal Exotoxin Streptolysin O Causes Vascular Endothelial Dysfunction Through PKCÎ ² Activation. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, JPET-AR-2021-000752.	2.5	2
5	Increased Blood Pressure Causes Lymphatic Endothelial Dysfunction via Oxidative Stress in Spontaneously Hypertensive Rats. Hypertension, 2020, 76, 598-606.	2.7	17
6	Abstract P079: Lymphatic Contraction Was Enhanced In Spontaneously Hypertensive Rats. Hypertension, 2020, 76, .	2.7	0
7	Bacterial toxin, streptolysin O caused vascular endothelial dysfunction: Relationship between dysbiosis and hypertension. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 2-O-061.	0.0	O
8	Endothelial PPARγ (Peroxisome Proliferator–Activated Receptor-γ) Protects From Angiotensin II–Induced Endothelial Dysfunction in Adult Offspring Born From Pregnancies Complicated by Hypertension. Hypertension, 2019, 74, 173-183.	2.7	18
9	RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity. Journal of Clinical Investigation, 2019, 129, 2318-2332.	8.2	32
10	Role of PPARG, a Transcriptional Factor on Hypertension. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 3-S30-2.	0.0	0
11	Thoracic duct function was impaired in spontaneously hypertensive rat. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-YIA-25.	0.0	0
12	Endothelialâ€Specific Interference with PPARγ Causes Endothelial Dysfunction with Sex―Specific Mechanisms in Offspring Born from AVPâ€infused Pregnancies. FASEB Journal, 2019, 33, 758.3.	0.5	0
13	Smooth Muscle PPARgamma Mutation Causes Impaired Renal Blood Flow and Saltâ€Sensitive Hypertension. FASEB Journal, 2019, 33, 569.18.	0.5	0
14	Abstract 120: Protective Role of Vascular Smooth Muscle Rho-Related BTB Domain Containing Protein 1 in Hypertension and Arterial Stiffness. Hypertension, 2019, 74, .	2.7	0
15	Interference With Endothelial PPAR (Peroxisome Proliferator–Activated Receptor)-γ Causes Accelerated Cerebral Vascular Dysfunction in Response to Endogenous Renin-Angiotensin System Activation. Hypertension, 2018, 72, 1227-1235.	2.7	17
16	Smooth Muscle PPARγ Mutation Causes Impaired Renal Blood Flow and Saltâ€Sensitive Hypertension. FASEB Journal, 2018, 32, .	0.5	0
17	Endogenous Reninâ€Angiotensin System Activation Causes Accelerated Cerebral Vascular Dysfunction in Mice Expressing Dominantâ€Negative Mutations in PPARγ in Endothelium. FASEB Journal, 2018, 32, 711.13.	0.5	0
18	Cardiovascular Effects of Endothelialâ€Specific Interference with PPARγ Activity in Offspring Born from AVPâ€induced Preeclamptic Pregnancies. FASEB Journal, 2018, 32, 911.5.	0.5	0

#	Article	IF	CITATIONS
19	Endothelial Cullin3 Mutation Causes Vascular Dysfunction, Arterial Stiffening, and Hypertension. FASEB Journal, 2018, 32, 900.1.	0.5	0
20	Abstract 133: Endothelial-Specific Interference With PPAR \hat{I}^3 Increases the Susceptibility to Angiotensin II-Induced Endothelial Dysfunction in Adult Offspring Born from AVP-Infused Pregnancies. Hypertension, 2018, 72, .	2.7	0
21	Abstract 036: Interference With PPAR \hat{I}^3 in the Endothelium Produces Endothelial Dysfunction in the Cerebral Circulation in Response to Activation of the Endogenous Renin-Angiotensin System. Hypertension, 2018, 72, .	2.7	0
22	Abstract 110: Vascular Smooth Muscle RhoBTB1 Protects From Hypertension and Arterial Stiffness by Cullin-3 Dependent Ubiquitination of Phosphodiesterase 5. Hypertension, 2018, 72, .	2.7	0
23	Abstract 094: Smooth Muscle PPAR \hat{I}^3 Mutation Causes Impaired Renal Blood Flow and Salt-Sensitive Hypertension. Hypertension, 2018, 72, .	2.7	0
24	Hypertension-Causing Mutation in Peroxisome Proliferator–Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-βB p65 in Vascular Smooth Muscle. Hypertension, 2017, 70, 174-182.	2.7	25
25	Effect of selective expression of dominant-negative PPARî³ in pro-opiomelanocortin neurons on the control of energy balance. Physiological Genomics, 2016, 48, 491-501.	2.3	13
26	Interference with PPAR \hat{I}^3 in endothelium accelerates angiotensin II-induced endothelial dysfunction. Physiological Genomics, 2016, 48, 124-134.	2.3	32
27	Nervous System Expression of PPARγ and Mutant PPARγ Has Profound Effects on Metabolic Regulation and Brain Development. Endocrinology, 2016, 157, 4266-4275.	2.8	14
28	Endothelial PPAR- \hat{l}^3 provides vascular protection from IL- \hat{l}^2 -induced oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H39-H48.	3.2	61
29	Abstract P205: Endothelium-specific Interference with PPARG Causes Cerebral Vascular Dysfunction in Response to Endogenous Renin-angiotensin System Activation. Hypertension, 2016, 68, .	2.7	0
30	Abstract P158: Cullin3 Regulated Endothelial Function by Modulating eNOS Activity. Hypertension, 2016, 68, .	2.7	0
31	Abstract 053: RhoBTB1 is a Novel Gene Protecting Against Hypertension. Hypertension, 2016, 68, .	2.7	0
32	PPARÎ ³ Regulation in Hypertension and Metabolic Syndrome. Current Hypertension Reports, 2015, 17, 89.	3. 5	27
33	Role of endothelial PPARγ: Protection against vascular dysfunction induced by ILâ€1β. FASEB Journal, 2015, 29, 642.3.	0.5	0
34	Long-Term Methylglyoxal Treatment Causes Endothelial Dysfunction of Rat Isolated Mesenteric Artery. Journal of Veterinary Medical Science, 2013, 75, 151-157.	0.9	19
35	Exploring Mechanisms of Diabetes-Related Macrovascular Complications: Role of Methylglyoxal, a Metabolite of Glucose on Regulation of Vascular Contractility. Journal of Pharmacological Sciences, 2012, 118, 303-310.	2.5	37
36	Methylglyoxal Accumulation in Arterial Walls Causes Vascular Contractile Dysfunction in Spontaneously Hypertensive Rats. Journal of Pharmacological Sciences, 2012, 120, 26-35.	2.5	31

#	Article	lF	CITATION
37	A novel adipocytokine, nesfatin-1 modulates peripheral arterial contractility and blood pressure in rats. Biochemical and Biophysical Research Communications, 2012, 418, 676-681.	2.1	67
38	Long-term methylglyoxal treatment impairs smooth muscle contractility in organ-cultured rat mesenteric artery. Pharmacological Research, 2012, 65, 91-99.	7.1	19
39	Methylglyoxal Enhances Sodium Nitroprusside–Induced Relaxation in Rat Aorta. Journal of Pharmacological Sciences, 2010, 112, 176-183.	2.5	24
40	Methylglyoxal Augments Angiotensin II–Induced Contraction in Rat Isolated Carotid Artery. Journal of Pharmacological Sciences, 2010, 114, 390-398.	2.5	20
41	Influences of Organic Solvents on CYPMPO-Electron Spin Resonance Spectra in In Vitro Radical Generating Systems. Journal of Veterinary Medical Science, 2010, 72, 1547-1550.	0.9	9
42	Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochemical and Biophysical Research Communications, 2010, 393, 668-672.	2.1	220
43	Methylglyoxal Inhibits Smooth Muscle Contraction in Isolated Blood Vessels. Journal of Pharmacological Sciences, 2009, 109, 305-310.	2.5	38
44	Telmisartan inhibits methylglyoxal-mediated cell death in human vascular endothelium. Biochemical and Biophysical Research Communications, 2008, 373, 253-257.	2.1	27
45	Mechanisms Underlying Pioglitazone-Mediated Relaxation in Isolated Blood Vessel. Journal of Pharmacological Sciences, 2008, 108, 258-265.	2.5	30