Guojian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8030406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous conversion of CO ₂ into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s. Chemical Science, 2015, 6, 6916-6924.	7.4	229
2	Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations. RSC Advances, 2014, 4, 42092-42113.	3.6	189
3	Imidazolium-based ionic porous hybrid polymers with POSS-derived silanols for efficient heterogeneous catalytic CO2 conversion under mild conditions. Chemical Engineering Journal, 2020, 381, 122765.	12.7	109
4	Mesoporous Polyoxometalate-Based Ionic Hybrid As a Triphasic Catalyst for Oxidation of Benzyl Alcohol with H ₂ O ₂ on Water. ACS Applied Materials & Interfaces, 2014, 6, 4438-4446.	8.0	100
5	Two-in-one: construction of hydroxyl and imidazolium-bifunctionalized ionic networks in one-pot toward synergistic catalytic CO ₂ fixation. Chemical Communications, 2020, 56, 3309-3312.	4.1	92
6	A hierarchical meso-macroporous poly(ionic liquid) monolith derived from a single soft template. Chemical Communications, 2015, 51, 4969-4972.	4.1	87
7	C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol. Scientific Reports, 2014, 4, 3651.	3.3	75
8	Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers. Scientific Reports, 2015, 5, 11236.	3.3	64
9	Hypercrosslinked organic polymer based carbonaceous catalytic materials: Sulfonic acid functionality and nano-confinement effect. Applied Catalysis B: Environmental, 2015, 176-177, 718-730.	20.2	64
10	Hydrophobic Mesoporous Poly(ionic liquid)s towards Highly Efficient and Contaminationâ€Resistant Solidâ€Base Catalysts. ChemCatChem, 2015, 7, 993-1003.	3.7	62
11	Heteropolyanion-based ionic liquid-functionalized mesoporous copolymer catalyst for Friedel–Crafts benzylation of arenes with benzyl alcohol. Chemical Engineering Journal, 2014, 254, 54-62.	12.7	61
12	Phase-transfer hydroxylation of benzene with H2O2 catalyzed by a nitrile-functionalized pyridinium phosphovanadomolybdate. Catalysis Science and Technology, 2013, 3, 1394.	4.1	53
13	Constructing POSS and viologen-linked porous cationic frameworks induced by the Zincke reaction for efficient CO ₂ capture and conversion. Chemical Communications, 2018, 54, 12174-12177.	4.1	52
14	Silanol-Enriched Viologen-Based Ionic Porous Hybrid Polymers for Efficient Catalytic CO ₂ Fixation into Cyclic Carbonates under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 16907-16916.	6.7	52
15	Hierarchically nanoporous copolymer with built-in carbene-CO2 adducts as halogen-free heterogeneous organocatalyst towards cycloaddition of carbon dioxide into carbonates. Chemical Engineering Journal, 2021, 403, 126460.	12.7	51
16	4,4′-Bipyridine-modified molybdovanadophosphoric acid: A reusable heterogeneous catalyst for direct hydroxylation of benzene with O2. Chemical Engineering Journal, 2014, 239, 19-25.	12.7	42
17	Enhanced Formation of 5-Hydroxymethylfurfural from Glucose Using a Silica-Supported Phosphate and Iron Phosphate Heterogeneous Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 10198-10205.	3.7	37
18	Facile synthesis of crystalline viologen-based porous ionic polymers with hydrogen-bonded water for efficient catalytic CO ₂ fixation under ambient conditions. RSC Advances, 2020, 10, 3606-3614.	3.6	33

GUOJIAN CHEN

#	Article	IF	CITATIONS
19	Schiff Base Structured Acid–Base Cooperative Dual Sites in an Ionic Solid Catalyst Lead to Efficient Heterogeneous Knoevenagel Condensations. Chemistry - A European Journal, 2012, 18, 12773-12782.	3.3	32
20	Direct Carbonization of Cyanopyridinium Crystalline Dicationic Salts into Nitrogen-Enriched Ultra-Microporous Carbons toward Excellent CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2015, 7, 18508-18518.	8.0	30
21	Synergistic combination of graphitic C3N4 and polyoxometalate-based phase-transfer catalyst for highly efficient reductant-free aerobic hydroxylation of benzene. Chemical Engineering Journal, 2018, 334, 873-881.	12.7	29
22	P-Doped carbons derived from cellulose as highly efficient metal-free catalysts for aerobic oxidation of benzyl alcohol in water under an air atmosphere. Chemical Communications, 2018, 54, 8991-8994.	4.1	29
23	<i>In situ</i> synthesis of pyridinium-based ionic porous organic polymers with hydroxide anions and pyridinyl radicals for halogen-free catalytic fixation of atmospheric CO ₂ . Green Chemistry, 2022, 24, 136-141.	9.0	29
24	Mesostructured Dihydroxyâ€Functionalized Guanidiniumâ€Based Polyoxometalate with Enhanced Heterogeneous Catalytic Activity in Epoxidation. ChemPlusChem, 2013, 78, 561-569.	2.8	23
25	Ionic self-assembly affords mesoporous ionic networks by crosslinking linear polyviologens with polyoxometalate clusters. Dalton Transactions, 2016, 45, 4504-4508.	3.3	20
26	Nitrogen-Doped Biomass Carbons Meet with Polyoxometalates: Synergistic Catalytic Reductant-Free Aerobic Hydroxylation of Benzene to Phenol. ACS Sustainable Chemistry and Engineering, 2019, 7, 4230-4238.	6.7	20
27	Efficient and recyclable multi-cationic polyoxometalate-based hybrid catalyst for heterogeneous cyclohexane oxidation with H ₂ O ₂ . RSC Advances, 2015, 5, 19306-19314.	3.6	18
28	POSS and imidazolium-constructed ionic porous hypercrosslinked polymers with multiple active sites for synergistic catalytic CO2 transformation. Dalton Transactions, 2021, 50, 11878-11888.	3.3	18
29	Metalated-bipyridine-based porous hybrid polymers with POSS-derived Si–OH groups for synergistic catalytic CO ₂ fixation. Dalton Transactions, 2020, 49, 11300-11309.	3.3	17
30	<i>In situ</i> construction of phenanthroline-based cationic radical porous hybrid polymers for metal-free heterogeneous catalysis. Journal of Materials Chemistry A, 2021, 9, 7556-7565.	10.3	17
31	Highly Active Palladiumâ€Based Catalyst System for the Aerobic Oxidative Direct Coupling of Benzene to Biphenyl. ChemCatChem, 2016, 8, 448-454.	3.7	16
32	Quaternization-induced catalyst-free synthesis of viologen-linked ionic polyacetylenes towards heterogeneous catalytic CO ₂ fixation. Journal of Materials Chemistry A, 2022, 10, 5540-5549.	10.3	15
33	Ionicâ€Liquidâ€Functionalized Polyoxometalates for Heterogeneously Catalyzing the Aerobic Oxidation of Benzene to Phenol: Raising Efficacy through Specific Design. ChemPlusChem, 2014, 79, 1590-1596.	2.8	14
34	COx-free hydrogen production via ammonia decomposition over mesoporous Co/Al2O3 catalysts with highly dispersed Co species synthesized by a facile method. Dalton Transactions, 2021, 50, 1443-1452.	3.3	14
35	A dicationic ionic liquid-modified phosphotungstate hybrid catalyst for the heterogeneous oxidation of alcohols with H2O2. Science China Chemistry, 2012, 55, 1796-1801.	8.2	13
36	Morphology-Controlled Preparation of Heteropolyanion-Derived Mesoporous Solid Base. ACS Sustainable Chemistry and Engineering, 2014, 2, 1918-1927.	6.7	13

GUOJIAN CHEN

#	Article	IF	CITATIONS
37	Targeted synthesis of ionic liquid-polyoxometalate derived Mo-based electrodes for advanced electrochemical performance. Journal of Materials Chemistry A, 2019, 7, 7194-7201.	10.3	11
38	Carbon-encapsulated Fe3O4 for catalyzing the aerobicÂoxidation of benzyl alcohol and benzene. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 1055-1065.	1.7	9
39	P,N co-doped biomass carbon as a remarkable metal-free catalyst for solvent-free oxidation of benzyl alcohol with ambient air: The key promoting role of N co-doping. Applied Surface Science, 2022, 571, 151409.	6.1	9
40	An easy way to identify high performing covalent organic frameworks for hydrogen storage. Chemical Communications, 2020, 56, 6376-6379.	4.1	8
41	Metal-free photocatalytic aerobic hydroxylation of benzene catalyzed by the commercially available quinoline sulfate. Catalysis Communications, 2019, 121, 1-4.	3.3	7
42	Computational Insights on the Role of Nanochannel Environment in the CO ₂ /CH ₄ and H ₂ /CH ₄ Separation Using Restacked Covalent Organic Framework Membranes. Journal of Physical Chemistry C, 2019, 123, 22949-22958.	3.1	6
43	A Bi-functional Cobalt and Nitrogen Co-doped Carbon Catalyst for Aerobic Oxidative Esterification of Benzyl Alcohol with Methanol and Oxygen Reduction Reaction. Catalysis Letters, 2019, 149, 3160-3168.	2.6	5
44	One-step and template-free fabrication of hollow carbon-modified Fe3O4 for catalyzing solvent-free aerobic oxidation of benzyl alcohol. Journal of Porous Materials, 2020, 27, 701-705.	2.6	3