Josep Rizo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8030381/publications.pdf

Version: 2024-02-01

		10389		11308
156	20,153	72		136
papers	citations	h-index		g-index
			. '	
225	225	225		14375
223	223	223		143/3
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Poly-glutamine-dependent self-association as a potential mechanism for regulation of androgen receptor activity. PLoS ONE, 2022, 17, e0258876.	2.5	7
2	Molecular Mechanisms Underlying Neurotransmitter Release. Annual Review of Biophysics, 2022, 51, 377-408.	10.0	83
3	SNARE assembly enlightened by cryo-EM structures of a synaptobrevin–Munc18-1–syntaxin-1 complex. Science Advances, 2022, 8, .	10.3	40
4	Synaptotagmin-1–, Munc18-1–, and Munc13-1–dependent liposome fusion with a few neuronal SNAREs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
5	Molecular machinery turns full circle. ELife, 2021, 10, .	6.0	2
6	Evaluation of the tert-butyl group as a probe for NMR studies of macromolecular complexes. Journal of Biomolecular NMR, 2021, 75, 347-363.	2.8	4
7	Computed structures of core eukaryotic protein complexes. Science, 2021, 374, eabm4805.	12.6	316
8	Control of neurotransmitter release by two distinct membrane-binding faces of the Munc13-1 C1C2B region. ELife, 2021, 10, .	6.0	23
9	Synaptotagmin-1 and Doc2b Exhibit Distinct Membrane-Remodeling Mechanisms. Biophysical Journal, 2020, 118, 643-656.	0.5	13
10	Open syntaxin overcomes exocytosis defects of diverse mutants in C. elegans. Nature Communications, 2020, 11, 5516.	12.8	18
11	Structural and mechanistic insights into secretagogin-mediated exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6559-6570.	7.1	25
12	A partially disordered region connects gene repression and activation functions of EZH2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16992-17002.	7.1	36
13	Reâ€examining how Munc13â€1 facilitates opening of syntaxinâ€1. Protein Science, 2020, 29, 1440-1458.	7.6	21
14	Analysis of asymmetry in lipid and content mixing assays with reconstituted proteoliposomes containing the neuronal SNAREs. Scientific Reports, 2020, 10, 2907.	3.3	0
15	Ca2+-dependent release of synaptotagmin-1 from the SNARE complex on phosphatidylinositol 4,5-bisphosphate-containing membranes. ELife, 2020, 9, .	6.0	44
16	Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Research, 2019, 47, 11623-11636.	14.5	30
17	Munc18-1 is crucial to overcome the inhibition of synaptic vesicle fusion by $\hat{l}\pm SNAP$. Nature Communications, 2019, 10, 4326.	12.8	44
18	Synaptic vesicle fusion: today and beyond. Nature Structural and Molecular Biology, 2019, 26, 663-668.	8.2	23

#	Article	IF	CITATIONS
19	Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and $\hat{l}\pm$ SNAP. ELife, 2019, 8, .	6.0	59
20	Membrane bridging by Munc13-1 is crucial for neurotransmitter release. ELife, 2019, 8, .	6.0	84
21	RIM C2B Domains Target Presynaptic Active Zone Functions to PIP2-Containing Membranes. Neuron, 2018, 98, 335-349.e7.	8.1	52
22	Roles of the fission yeast UNC-13/Munc13 protein Ync13 in late stages of cytokinesis. Molecular Biology of the Cell, 2018, 29, 2259-2279.	2.1	12
23	Mechanism of neurotransmitter release coming into focus. Protein Science, 2018, 27, 1364-1391.	7.6	162
24	A cascade of multiple proteins and lipids catalyzes membrane fusion. Molecular Biology of the Cell, 2017, 28, 707-711.	2.1	75
25	Simultaneous lipid and content mixing assays for in vitro reconstitution studies of synaptic vesicle fusion. Nature Protocols, 2017, 12, 2014-2028.	12.0	22
26	Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C ₂ A domain in asynchronous neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8518-E8527.	7.1	42
27	Heterodimerization of Munc13 C2A domain with RIM regulates synaptic vesicle docking and priming. Nature Communications, 2017, 8, 15293.	12.8	80
28	UNC-18 and Tomosyn Antagonistically Control Synaptic Vesicle Priming Downstream of UNC-13 in <i>Caenorhabditis elegans</i>). Journal of Neuroscience, 2017, 37, 8797-8815.	3.6	39
29	Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN. ELife, 2017, 6, .	6.0	103
30	Autoinhibition of Munc $18-1$ modulates synaptobrevin binding and helps to enable Munc 13 -dependent regulation of membrane fusion. ELife, 2017, 6, .	6.0	80
31	Reconciling isothermal titration calorimetry analyses of interactions between complexin and truncated SNARE complexes. ELife, 2017, 6, .	6.0	11
32	Functional synergy between the Munc13 C-terminal C1 and C2 domains. ELife, 2016, 5, .	6.0	96
33	Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts. Journal of Biomolecular NMR, 2016, 66, 281-293.	2.8	8
34	Preparation and Characterization of Stable α-Synuclein Lipoprotein Particles. Journal of Biological Chemistry, 2016, 291, 8516-8527.	3.4	49
35	Dynamic binding mode of a Synaptotagmin-1–SNARE complex in solution. Nature Structural and Molecular Biology, 2015, 22, 555-564.	8.2	129
36	Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nature Structural and Molecular Biology, 2015, 22, 547-554.	8.2	155

#	Article	IF	CITATIONS
37	The Synaptic Vesicle Release Machinery. Annual Review of Biophysics, 2015, 44, 339-367.	10.0	292
38	KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes. Chemistry and Biology, 2015, 22, 1185-1196.	6.0	66
39	Mixed Lineage Kinase Domain-like Protein MLKL Causes Necrotic Membrane Disruption upon Phosphorylation by RIP3. Molecular Cell, 2014, 54, 133-146.	9.7	1,247
40	Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature, 2014, 505, 103-107.	27.8	256
41	A Plug Release Mechanism for Membrane Permeation by MLKL. Structure, 2014, 22, 1489-1500.	3.3	185
42	Structure and Ca2+-Binding Properties of the Tandem C2 Domains of E-Syt2. Structure, 2014, 22, 269-280.	3.3	41
43	Re-examining how complexin inhibits neurotransmitter release. ELife, 2014, 3, e02391.	6.0	68
44	Synaptic Vesicle Fusion without SNARE Transmembrane Regions. Developmental Cell, 2013, 27, 124-126.	7.0	4
45	Reconstitution of the Vital Functions of Munc18 and Munc13 in Neurotransmitter Release. Science, 2013, 339, 421-425.	12.6	351
46	Subtle Interplay between Synaptotagmin and Complexin Binding to the SNARE Complex. Journal of Molecular Biology, 2013, 425, 3461-3475.	4.2	39
47	Analysis of SNARE Complex/Synaptotagmin-1 Interactions by One-Dimensional NMR Spectroscopy. Biochemistry, 2013, 52, 3446-3456.	2.5	24
48	Prevalent mechanism of membrane bridging by synaptotagmin-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3243-52.	7.1	54
49	Enlightening molecular mechanisms through study of protein interactions. Journal of Molecular Cell Biology, 2012, 4, 270-283.	3.3	26
50	Staging Membrane Fusion. Science, 2012, 337, 1300-1301.	12.6	9
51	The Membrane Fusion Enigma: SNAREs, Sec1/Munc18 Proteins, and Their Accomplices—Guilty as Charged?. Annual Review of Cell and Developmental Biology, 2012, 28, 279-308.	9.4	363
52	Synaptic Vesicle Exocytosis. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005637-a005637.	5 . 5	399
53	RIM Proteins Tether Ca2+ Channels to Presynaptic Active Zones via a Direct PDZ-Domain Interaction. Cell, 2011, 144, 282-295.	28.9	502
54	NMR Structure and Calcium-Binding Properties of the Tellurite Resistance Protein TerD from Klebsiella pneumoniae. Journal of Molecular Biology, 2011, 405, 1188-1201.	4.2	18

#	Article	lF	CITATIONS
55	Munc13 mediates the transition from the closed syntaxin–Munc18 complex to the SNARE complex. Nature Structural and Molecular Biology, 2011, 18, 542-549.	8.2	292
56	The Crystal Structure of a Munc13 C-terminal Module Exhibits a Remarkable Similarity to Vesicle Tethering Factors. Structure, 2011, 19, 1443-1455.	3.3	71
57	Reluctance to membrane binding enables accessibility of the synaptobrevin SNARE motif for SNARE complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12723-12728.	7.1	48
58	Membrane Bridging and Hemifusion by Denaturated Munc18. PLoS ONE, 2011, 6, e22012.	2.5	15
59	At the junction of SNARE and SM protein function. Current Opinion in Cell Biology, 2010, 22, 488-495.	5.4	154
60	Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nature Structural and Molecular Biology, 2010, 17, 280-288.	8.2	202
61	Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nature Structural and Molecular Biology, 2010, 17, 568-575.	8.2	113
62	Synaptotagmin-SNARE coupling enlightened. Nature Structural and Molecular Biology, 2010, 17, 260-262.	8.2	6
63	Binding of Munc18-1 to Synaptobrevin and to the SNARE Four-Helix Bundle. Biochemistry, 2010, 49, 1568-1576.	2.5	87
64	Structural and Mutational Analysis of Functional Differentiation between Synaptotagmins-1 and -7. PLoS ONE, 2010, 5, e12544.	2.5	28
65	Differential but convergent functions of Ca ²⁺ binding to synaptotagmin-1 C ₂ domains mediate neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16469-16474.	7.1	93
66	Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming. Journal of Cell Biology, 2009, 184, 751-764.	5.2	145
67	Remote Homology between Munc13 MUN Domain and Vesicle Tethering Complexes. Journal of Molecular Biology, 2009, 391, 509-517.	4.2	68
68	NMR analysis of the closed conformation of syntaxin-1. Journal of Biomolecular NMR, 2008, 41, 43-54.	2.8	49
69	Synaptic vesicle fusion. Nature Structural and Molecular Biology, 2008, 15, 665-674.	8.2	451
70	The Janus-faced nature of the C2B domain is fundamental for synaptotagmin-1 function. Nature Structural and Molecular Biology, 2008, 15, 1160-1168.	8.2	118
71	A Dynamic t-SNARE Complex. Structure, 2008, 16, 163-165.	3.3	4
72	Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion. Science, 2008, 321, 1507-1510.	12.6	241

#	Article	IF	CITATIONS
73	Binding of the Munc13-1 MUN Domain to Membrane-Anchored SNARE Complexes. Biochemistry, 2008, 47, 1474-1481.	2.5	87
74	Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3986-3991.	7.1	95
75	Insights into Mad2 Regulation in the Spindle Checkpoint Revealed by the Crystal Structure of the Symmetric Mad2 Dimer. PLoS Biology, 2008, 6, e50.	5.6	86
76	Munc18-1 binds directly to the neuronal SNARE complex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2697-2702.	7.1	290
77	Complexin/Synaptotagmin Interplay Controls Acrosomal Exocytosis. Journal of Biological Chemistry, 2007, 282, 26335-26343.	3.4	67
78	Dual Modes of Munc18-1/SNARE Interactions Are Coupled by Functionally Critical Binding to Syntaxin-1 N Terminus. Journal of Neuroscience, 2007, 27, 12147-12155.	3.6	129
79	p31comet Blocks Mad2 Activation through Structural Mimicry. Cell, 2007, 131, 744-755.	28.9	172
80	A Quaternary SNARE–Synaptotagmin–Ca2+–Phospholipid Complex in Neurotransmitter Release. Journal of Molecular Biology, 2007, 367, 848-863.	4.2	117
81	Crystal Structure of the RIM1α C2B Domain at 1.7 à Resolution,. Biochemistry, 2007, 46, 8988-8998.	2.5	19
82	How much can SNAREs flex their muscles?. Nature Structural and Molecular Biology, 2007, 14, 880-882.	8.2	4
83	Distinct domains of complexin I differentially regulate neurotransmitter release. Nature Structural and Molecular Biology, 2007, 14, 949-958.	8.2	198
84	SNARE-Mediated Lipid Mixing Depends on the Physical State of the Vesicles. Biophysical Journal, 2006, 90, 2062-2074.	0.5	133
85	A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis. Cell, 2006, 126, 1175-1187.	28.9	397
86	Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nature Structural and Molecular Biology, 2006, 13, 209-217.	8.2	235
87	Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO Journal, 2006, 25, 2039-2050.	7.8	156
88	Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO Journal, 2006, 25, 2856-2866.	7.8	98
89	Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends in Cell Biology, 2006, 16, 339-350.	7.9	227
90	Illuminating membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19611-19612.	7.1	7

#	Article	IF	Citations
91	Phosphatidylinositol Phosphates as Co-activators of Ca2+ Binding to C2 Domains of Synaptotagmin 1*. Journal of Biological Chemistry, 2006, 281, 15845-15852.	3.4	115
92	Structural Basis for a Munc13–1 Homodimer to Munc13–1/RIM Heterodimer Switch. PLoS Biology, 2006, 4, e192.	5.6	106
93	A minimal domain responsible for Munc13 activity. Nature Structural and Molecular Biology, 2005, 12, 1017-1018.	8.2	170
94	A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity?. EMBO Journal, 2005, 24, 2839-2850.	7.8	230
95	Crystal Structure of the RIM2 C2A-Domain at 1.4 Ã Resolution,. Biochemistry, 2005, 44, 13533-13542.	2.5	21
96	Intramolecular Occlusion of the Diacylglycerol-Binding Site in the C1 Domain of Munc13-1,. Biochemistry, 2005, 44, 1089-1096.	2.5	53
97	Three-dimensional Structure of the rSly1 N-terminal Domain Reveals a Conformational Change Induced by Binding to Syntaxin 5. Journal of Molecular Biology, 2005, 346, 589-601.	4.2	26
98	Are Neuronal SNARE Proteins Ca2+ Sensors?. Journal of Molecular Biology, 2005, 347, 145-158.	4.2	19
99	Solution Structure of the RIM1α PDZ Domain in Complex with an ELKS1b C-terminal Peptide. Journal of Molecular Biology, 2005, 352, 455-466.	4.2	35
100	Unexpected Ca2+-binding properties of synaptotagmin 9. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2554-2559.	7.1	33
101	Conformation-specific binding of p31comet antagonizes the function of Mad2 in the spindle checkpoint. EMBO Journal, 2004, 23, 3133-3143.	7.8	177
102	A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nature Structural and Molecular Biology, 2004, 11 , 45-53.	8.2	84
103	The Mad2 spindle checkpoint protein has two distinct natively folded states. Nature Structural and Molecular Biology, 2004, 11, 338-345.	8.2	263
104	Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4. Nature Structural and Molecular Biology, 2004, 11, 844-849.	8.2	88
105	Three-Dimensional Structure of an Independently Folded Extracellular Domain of Human Amyloid-β Precursor Proteinâ€,‡. Biochemistry, 2004, 43, 9583-9588.	2.5	38
106	Endocytosis of Synaptotagmin 1 Is Mediated by a Novel, Tryptophan-Containing Motif. Traffic, 2003, 4, 468-478.	2.7	25
107	SNARE function revisited. Nature Structural and Molecular Biology, 2003, 10, 417-419.	8.2	23
108	Facile Detection of Proteinâ^'Protein Interactions by One-Dimensional NMR Spectroscopyâ€. Biochemistry, 2003, 42, 2774-2780.	2.5	47

#	Article	IF	CITATIONS
109	Evidence for SNARE zippering during Ca2+-triggered exocytosis in PC12 cells. Neuropharmacology, 2003, 45, 777-786.	4.1	43
110	A Broken α-Helix in Folded α-Synuclein. Journal of Biological Chemistry, 2003, 278, 15313-15318.	3.4	453
111	Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 32-37.	7.1	91
112	C2-Domains in Ca2+-Signaling. , 2003, , 95-100.		0
113	Role of Electrostatic and Hydrophobic Interactions in Ca2+-Dependent Phospholipid Binding by the C2A-Domain From Synaptotagmin I. Diabetes, 2002, 51, S12-S18.	0.6	37
114	The N-terminal Domains of Syntaxin 7 and vti1b Form Three-helix Bundles That Differ in Their Ability to Regulate SNARE Complex Assembly. Journal of Biological Chemistry, 2002, 277, 36449-36456.	3.4	63
115	Ca ²⁺ -Binding Mode of the C ₂ A-Domain of Synaptotagmin., 2002, 172, 305-316.		1
116	Solution Structure of the Vam7p PX Domainâ€,‡. Biochemistry, 2002, 41, 5956-5962.	2.5	37
117	NMR measurement of the off rate from the first calcium-binding site of the synaptotagmin I C2A domain. FEBS Letters, 2002, 516, 93-96.	2.8	26
118	The Mad2 Spindle Checkpoint Protein Undergoes Similar Major Conformational Changes Upon Binding to Either Mad1 or Cdc20. Molecular Cell, 2002, 9, 59-71.	9.7	290
119	Sly1 Binds to Golgi and ER Syntaxins via a Conserved N-Terminal Peptide Motif. Developmental Cell, 2002, 2, 295-305.	7.0	185
120	Structure/Function Analysis of Ca ²⁺ Binding to the C ₂ A Domain of Synaptotagmin 1. Journal of Neuroscience, 2002, 22, 8438-8446.	3.6	122
121	Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nature Neuroscience, 2002, 5, 649-656.	14.8	78
122	Snares and munc18 in synaptic vesicle fusion. Nature Reviews Neuroscience, 2002, 3, 641-653.	10.2	485
123	How Tlg2p/syntaxin 16 'snares' Vps45. EMBO Journal, 2002, 21, 3620-3631.	7.8	172
124	Three-Dimensional Structure of the Complexin/SNARE Complex. Neuron, 2002, 33, 397-409.	8.1	402
125	Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain. Neuron, 2001, 32, 1057-1069.	8.1	373
126	The C2B Domain of Synaptotagmin I Is a Ca2+-Binding Module. Biochemistry, 2001, 40, 5854-5860.	2.5	125

#	Article	IF	Citations
127	Vam3p structure reveals conserved and divergent properties of syntaxins. Nature Structural Biology, 2001, 8, 258-264.	9.7	140
128	Synaptotagmin I functions as a calcium regulator of release probability. Nature, 2001, 410, 41-49.	27.8	857
129	The Top Loops of the C2 Domains from Synaptotagmin and Phospholipase A2 Control Functional Specificity. Journal of Biological Chemistry, 2001, 276, 32288-32292.	3.4	24
130	Functional Analysis of Conserved Structural Elements in Yeast Syntaxin Vam3p. Journal of Biological Chemistry, 2001, 276, 28598-28605.	3.4	48
131	The relation of protein binding to function: what is the significance of munc18 and synaptotagmin binding to syntaxin 1, and where are the corresponding binding sites?. European Journal of Cell Biology, 2000, 79, 377-382.	3.6	30
132	Selective Interaction of Complexin with the Neuronal SNARE Complex. Journal of Biological Chemistry, 2000, 275, 19808-19818.	3.4	162
133	Consensus Bioactive Conformation of Cyclic GnRH Antagonists Defined by NMR and Molecular Modelingâ€. Journal of Medicinal Chemistry, 2000, 43, 819-828.	6.4	34
134	Structure of the Janus-faced C2B domain of rabphilin. Nature Cell Biology, 1999, 1, 106-112.	10.3	67
135	NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. Journal of Biomolecular NMR, 1999, 14, 203-207.	2.8	80
136	Measurement of One Bond Dipolar Couplings through Lanthanide-Induced Orientation of a Calcium-Binding Protein. Journal of the American Chemical Society, 1999, 121, 8947-8948.	13.7	41
137	Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain?. EMBO Journal, 1998, 17, 3921-3930.	7.8	289
138	Mechanics of membrane fusion. Nature Structural Biology, 1998, 5, 839-842.	9.7	64
139	Three-Dimensional Structure of an Evolutionarily Conserved N-Terminal Domain of Syntaxin 1A. Cell, 1998, 94, 841-849.	28.9	309
140	Solution Structures of the Ca2+-free and Ca2+-bound C2A Domain of Synaptotagmin I: Does Ca2+Induce a Conformational Change?â€. Biochemistry, 1998, 37, 16106-16115.	2.5	234
141	Mechanism of Phospholipid Binding by the C2A-Domain of Synaptotagmin lâ€. Biochemistry, 1998, 37, 12395-12403.	2.5	190
142	The LDL Receptor Clustering Motif Interacts with the Clathrin Terminal Domain in a Reverse Turn Conformation. Journal of Cell Biology, 1998, 142, 59-67.	5.2	86
143	C2-domains, Structure and Function of a Universal Ca2+-binding Domain. Journal of Biological Chemistry, 1998, 273, 15879-15882.	3.4	755
144	The Evolutionary Pressure to Inactivate. Journal of Biological Chemistry, 1997, 272, 14314-14319.	3.4	154

#	Article	IF	CITATIONS
145	Synaptotagmin–Syntaxin Interaction: The C2 Domain as a Ca2+-Dependent Electrostatic Switch. Neuron, 1997, 18, 133-142.	8.1	234
146	Cavity formation before stable hydrogen bonding in the folding of a \hat{l}^2 -clam protein. Nature Structural and Molecular Biology, 1997, 4, 883-886.	8.2	58
147	Assignment of the 1H, 15N and 13C resonances of the calcium-free and calcium-bound forms of the first C2-domain of synaptotagmin I. Journal of Biomolecular NMR, 1997, 10, 307-308.	2.8	12
148	A Novel Conformation in a Highly Potent, Constrained Gonadotropin-Releasing Hormone Antagonist. Journal of the American Chemical Society, 1996, 118, 970-976.	13.7	16
149	Synaptotagmins: C2-Domain Proteins That Regulate Membrane Traffic. Neuron, 1996, 17, 379-388.	8.1	432
150	1H and 15N resonance assignments and secondary structure of cellular retinoic acid-binding protein with and without bound ligand. Journal of Biomolecular NMR, 1994, 4, 741-760.	2.8	39
151	Conformation of a heptapeptide substrate bound to protein farnesyltransferase. Biochemistry, 1993, 32, 12586-12590.	2.5	62
152	Constrained Peptides: Models of Bioactive Peptides and Protein Substructures. Annual Review of Biochemistry, 1992, 61, 387-416.	11.1	360
153	Conformational analysis of a highly potent, constrained gonadotropin-releasing hormone antagonist. 1. Nuclear magnetic resonance. Journal of the American Chemical Society, 1992, 114, 2852-2859.	13.7	38
154	Impact of a micellar environment on the conformations of two cyclic pentapeptides. Biopolymers, 1992, 32, 1741-1754.	2.4	20
155	Cyclic pentapeptides as models for reverse turns: Determination of the equilibrium distribution between type I and type II conformations of Pro-Asn and Pro-Ala?-turns. Biopolymers, 1990, 29, 263-287.	2.4	89
156	All-atom molecular dynamics simulations of Synaptotagmin-SNARE-complexin complexes bridging a vesicle and a flat lipid bilayer. ELife, $0,11,10$	6.0	22