Irmela Jeremias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8030349/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel and efficient tandem CD19- and CD22-directed CAR for B cell ALL. Molecular Therapy, 2022, 30, 550-563.	8.2	21
2	The Molecular Subtype of Adult Acute Lymphoblastic Leukemia Samples Determines the Engraftment Site and Proliferation Kinetics in Patient-Derived Xenograft Models. Cells, 2022, 11, 150.	4.1	3
3	A Novel Anti-CD73 Antibody That Selectively Inhibits Membrane CD73 Shows Antitumor Activity and Induces Tumor Immune Escape. Biomedicines, 2022, 10, 825.	3.2	4
4	Prime-seq, efficient and powerful bulk RNA sequencing. Genome Biology, 2022, 23, 88.	8.8	31
5	Adverse stem cell clones within a single patient's tumor predict clinical outcome in AML patients. Journal of Hematology and Oncology, 2022, 15, 25.	17.0	1
6	The Multi-Kinase Inhibitor EC-70124 Is a Promising Candidate for the Treatment of FLT3-ITD-Positive Acute Myeloid Leukemia. Cancers, 2022, 14, 1593.	3.7	1
7	INSP-15. ITCC-P4: A sustainable platform of molecularly well-characterized PDX models of pediatric cancers for high throughput <i>in vivo</i> testing. Neuro-Oncology, 2022, 24, i189-i189.	1.2	0
8	Adapting CRISPR Cas9 dropout screens to in vivo PDX models of acute leukemias. Klinische Padiatrie, 2022, , .	0.6	0
9	ADAM10's sheddase function augments the interaction of leukemia cells with the bone marrow niche in PDX models in vivo. Klinische Padiatrie, 2022, , .	0.6	0
10	Mutations in KRAS and DNMT3A are not related to dependency in established tumors, in PDX acute leukemia model in vivo. Klinische Padiatrie, 2022, , .	0.6	0
11	Streamlining preclinical in vivo treatment trials by multiplexing genetically labelled PDX models in a single mouse. Klinische Padiatrie, 2022, , .	0.6	0
12	TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia, 2021, 35, 389-403.	7.2	26
13	CD79a promotes CNS-infiltration and leukemia engraftment in pediatric B-cell precursor acute lymphoblastic leukemia. Communications Biology, 2021, 4, 73.	4.4	18
14	Loss-of-function mutations in the histone methyltransferase EZH2 promote chemotherapy resistance in AML. Scientific Reports, 2021, 11, 5838.	3.3	22
15	Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature, 2021, 593, 597-601.	27.8	531
16	Small molecule inhibitors of the mitochondrial ClpXP protease possess cytostatic potential and re-sensitize chemo-resistant cancers. Scientific Reports, 2021, 11, 11185.	3.3	1
17	A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood, 2021, 137, 3403-3415.	1.4	8
18	A reporter system for enriching CRISPR/Cas9 knockout cells in technically challenging settings like patient models. Scientific Reports, 2021, 11, 12649.	3.3	5

#	Article	IF	CITATIONS
19	Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC-specific T-cell bispecific antibody. Blood, 2021, 138, 2655-2669.	1.4	43
20	RSPO2 inhibits BMP signaling to promote self-renewal in acute myeloid leukemia. Cell Reports, 2021, 36, 109559.	6.4	10
21	In vivo inducible reverse genetics in patients' tumors to identify individual therapeutic targets. Nature Communications, 2021, 12, 5655.	12.8	10
22	SIRPα-αCD123 fusion antibodies targeting CD123 in conjunction with CD47 blockade enhance the clearance of AML-initiating cells. Journal of Hematology and Oncology, 2021, 14, 155.	17.0	13
23	The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nature Communications, 2021, 12, 5397.	12.8	20
24	Inhibiting casein kinase 2 sensitizes acute lymphoblastic leukemia cells to venetoclax via MCL1 degradation. Blood Advances, 2021, 5, 5501-5506.	5.2	5
25	Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia, 2020, 34, 50-62.	7.2	56
26	The Cytotoxic Natural Product Vioprolideâ€A Targets Nucleolar Protein 14, Which Is Essential for Ribosome Biogenesis. Angewandte Chemie - International Edition, 2020, 59, 1595-1600.	13.8	37
27	RIG-I-based immunotherapy enhances survival in preclinical AML models and sensitizes AML cells to checkpoint blockade. Leukemia, 2020, 34, 1017-1026.	7.2	33
28	Inducible transgene expression in PDX models in vivo identifies KLF4 as a therapeutic target for B-ALL. Biomarker Research, 2020, 8, 46.	6.8	5
29	Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood, 2020, 136, 1407-1418.	1.4	91
30	CLUE: a bioinformatic and wet-lab pipeline for multiplexed cloning of custom sgRNA libraries. Nucleic Acids Research, 2020, 48, e78.	14.5	2
31	41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. , 2020, 8, e000845.		37
32	Targeting RSPO3-LGR4 Signaling for Leukemia Stem Cell Eradication in Acute Myeloid Leukemia. Cancer Cell, 2020, 38, 263-278.e6.	16.8	59
33	Requirement for LIM kinases in acute myeloid leukemia. Leukemia, 2020, 34, 3173-3185.	7.2	8
34	ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells. Oncogene, 2020, 39, 3195-3205.	5.9	18
35	Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nature Medicine, 2020, 26, 207-214.	30.7	169
36	Plasticity in growth behavior of patients' acute myeloid leukemia stem cells growing in mice. Haematologica, 2020, 105, 2855-2860.	3.5	15

#	Article	IF	CITATIONS
37	CD79a/CD79b Promote CNS-Involvement and Leukemic Engraftment in Pediatric B-cell Precursor Acute Lymphoblastic Leukemia. , 2020, 232, .		0
38	Gold Nanoparticles with Selective Antileukemic Activity In Vitro and In Vivo Target Mitochondrial Respiration. Advanced Therapeutics, 2019, 2, 1800149.	3.2	1
39	Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML. Blood, 2019, 134, 263-276.	1.4	41
40	Tumor Cell Dormancy—Triggered by the Niche. Developmental Cell, 2019, 49, 311-312.	7.0	8
41	Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body. Cell, 2019, 179, 1661-1676.e19.	28.9	142
42	JMJD1C-mediated metabolic dysregulation contributes to HOXA9-dependent leukemogenesis. Leukemia, 2019, 33, 1400-1410.	7.2	31
43	Targeting the endoplasmic reticulum-mitochondria interface sensitizes leukemia cells to cytostatics. Haematologica, 2019, 104, 546-555.	3.5	10
44	A rare subgroup of leukemia stem cells harbors relapse-inducing potential in acute lymphoblastic leukemia. Experimental Hematology, 2019, 69, 1-10.	0.4	11
45	Frequent and reliable engraftment of certain adult primary acute lymphoblastic leukemias in mice. Leukemia and Lymphoma, 2019, 60, 848-851.	1.3	4
46	Evaluation of a Bifunctional Sirpα-CD123 Fusion Antibody for the Elimination of Acute Myeloid Leukemia Stem Cells. Blood, 2019, 134, 2544-2544.	1.4	3
47	Isolation and characterization of tumor-derived exosomes from a patient-derived xenograft mouse model of acute leukemia. , 2019, 231, .		0
48	FOS and FOSB are linked with CNS-infiltration and inferior prognosis in childhood T-cell acute lymphoblastic leukemia. , 2019, 231, .		0
49	Abstract 2059: Long-term survival of mice with relapsed ALL treated by oncolytic measles virus is terminated by expansion of persistently infected virus-resistant blasts. , 2019, , .		0
50	Single Cell Clones Derived from a Patient's AML Xenograft Display Genetic and Functional Heterogeneity. Blood, 2019, 134, 1450-1450.	1.4	0
51	A CRISPR/Cas9 Library Screen in Patients' Leukemia Cells In Vivo. Blood, 2019, 134, 3945-3945.	1.4	1
52	Spatiotemporal patterning of EpCAM is important for murine embryonic endo- and mesodermal differentiation. Scientific Reports, 2018, 8, 1801.	3.3	20
53	Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia, 2018, 32, 313-322.	7.2	61
54	CRISPR/Cas9-edited NSG mice as PDX models of human leukemia to address the role of niche-derived SPARC. Leukemia, 2018, 32, 1048-1051.	7.2	8

#	Article	IF	CITATIONS
55	Characteristics and Therapeutic Targeting of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia. Advances in Experimental Medicine and Biology, 2018, 1100, 127-139.	1.6	5
56	Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL. Blood Advances, 2018, 2, 2554-2567.	5.2	14
57	SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nature Communications, 2018, 9, 5378.	12.8	60
58	Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics, 2018, 8, 369-383.	10.0	68
59	CD79a Is Associated with Central Nervous System Infiltration of Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2018, 132, 386-386.	1.4	1
60	CD79a impacts central nervous system (CNS) infiltration of pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). , 2018, 230, .		0
61	Long-Term Dormant Cells in Acute Myeloid Leukemia Patient-Derived Xenografts Display Reversible Treatment Resistance, but Are Not Enriched for Leukemia-Initiating Cells. Blood, 2018, 132, 1518-1518.	1.4	0
62	The Nucleotide Kinase Nadk Is Required for ROS Detoxification and Constitutes a Metabolic Vulnerability of NOTCH1-Driven T-ALL. Blood, 2018, 132, 2615-2615.	1.4	1
63	Loss of KDM6A Confers Drug Resistance in Acute Myeloid Leukemia. Blood, 2018, 132, 3935-3935.	1.4	Ο
64	Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nature Medicine, 2017, 23, 69-78.	30.7	192
65	The target landscape of clinical kinase drugs. Science, 2017, 358, .	12.6	609
66	Azacitidine combined with the selective FLT3 kinase inhibitor crenolanib disrupts stromal protection and inhibits expansion of residual leukemia-initiating cells in <i>FLT3</i> ITD AML with concurrent epigenetic mutations. Oncotarget, 2017, 8, 108738-108759.	1.8	14
67	Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 30, 849-862.	16.8	215
68	X-Linked inhibitor of apoptosis protein (XIAP) exhibits an essential role of patients' acute lymphoblastic leukemia cells growing in vivo. European Journal of Cancer, 2016, 69, S58-S59.	2.8	1
69	The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell, 2016, 29, 574-586.	16.8	227
70	Novel genetically engineered patient-derived xenograft (GEPDX) models reveal that XIAP plays an essential role for patients' all growing in mice. Experimental Hematology, 2016, 44, S105.	0.4	0
71	Characterization of a novel dormant, drug resistant, stem cell subpopulation in acute lymphoblastic leukemia. European Journal of Cancer, 2016, 61, S207.	2.8	1
72	Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia, 2016, 30, 484-491.	7.2	201

#	Article	IF	CITATIONS
73	Peptide-Receptor Radiotherapy with CXCR4-Targeting Pentixather Reduces Leukemia Burden in Acute Leukemia PDX and Patients. Blood, 2016, 128, 4055-4055.	1.4	2
74	Abstract B070: Characterization of covariables modulating CD33/CD3 BITE® antibody construct mediated cytotoxicity against primary AML cells. , 2016, , .		0
75	Targeting the ER-Mitochondrial Interface of Cell Death Sensitizes Leukemia Cells Towards Cytostatics. Blood, 2016, 128, 2319-2319.	1.4	7
76	Clones with and without Sensitivity Towards Treatment In Vivo Co-Exist within the Tumor Cells of a Single Patient with ALL. Blood, 2016, 128, 456-456.	1.4	5
77	Drug Resistance and Dormancy Represent Reversible Characteristics in Patients' ALL Cells Growing in Mice. Blood, 2016, 128, 602-602.	1.4	1
78	Hypomethylating Agents and Casein Kinase 2 Inhibitor Act Synergistic and Reveal Significant Anti-Leukemic Effects in Acute Lymphoblastic Leukemia Cells. Blood, 2016, 128, 2804-2804.	1.4	0
79	An Advanced Preclinical Mouse Model for Acute Myeloid Leukemia Using Patients' Cells of Various Genetic Subgroups and In Vivo Bioluminescence Imaging. PLoS ONE, 2015, 10, e0120925.	2.5	78
80	MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell Reports, 2015, 13, 2715-2727.	6.4	118
81	Effects of p38α/β inhibition on acute lymphoblastic leukemia proliferation and survival in vivo. Leukemia, 2015, 29, 2307-2316.	7.2	11
82	Dual PI3K/mTOR inhibition shows antileukemic activity in MLL-rearranged acute myeloid leukemia. Leukemia, 2015, 29, 828-838.	7.2	63
83	Tyrosin Kinase Inhibition Restores the Membrane Localization of FLT3-ITD. Blood, 2015, 126, 1274-1274.	1.4	1
84	Proxe: A Public Repository of Xenografts to Facilitate Studies of Biology and Expedite Preclinical Drug Development in Leukemia and Lymphoma. Blood, 2015, 126, 3252-3252.	1.4	2
85	Anti-leukemic effects of the V-ATPase inhibitor Archazolid A. Oncotarget, 2015, 6, 43508-43528.	1.8	26
86	The Novel Technique of Genetically Engineered Patient-Derived Xenografts (GEPDX) Reveals That the X-Linked Inhibitor of Apoptosis Protein (XIAP) Plays an Essential Role for Maintenance and Growth of Patients' Acute Lymphoblastic Leukemia In Vivo. Blood, 2015, 126, 2632-2632.	1.4	3
87	Single Cell RNA Sequencing Reveals Increased Adhesion Signals in Treatment-Resistant Tumor Stem Cells in a Preclinical Mouse Model of Genetically Engineered Patient-Derived Acute Lymphoblastic Leukemia. Blood, 2015, 126, 2630-2630.	1.4	0
88	Functional Diversity of Single Stem Cell Clones in Patients' Acute Lymphoblastic Leukemia Growing in Mice: An Adverse Subclone with Distinct DNA-Methylation Pattern, Slow Growth In Vivo and Drug Resistance. Blood, 2015, 126, 3062-3062.	1.4	0
89	TRAIL–Receptor Costimulation Inhibits Proximal TCR Signaling and Suppresses Human T Cell Activation and Proliferation. Journal of Immunology, 2014, 193, 4021-4031.	0.8	39
90	Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nature Medicine, 2014, 20, 1401-1409.	30.7	50

#	Article	IF	CITATIONS
91	Bioluminescence in Vivo Imaging Improves the Model of Individual Patients' AML Cells Growing in Mice for Sensitive and Reliable Preclinical Treatment Trials on Various Genetic Subgroups. Blood, 2014, 124, 2323-2323.	1.4	0
92	Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling. Cell Communication and Signaling, 2013, 11, 27.	6.5	12
93	Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis. Cell Death and Disease, 2013, 4, e661-e661.	6.3	37
94	Enhanced antiâ€ŧumour effects of <scp>V</scp> inca alkaloids given separately from cytostatic therapies. British Journal of Pharmacology, 2013, 168, 1558-1569.	5.4	16
95	Abstract 3326: TRAIL induces apoptosis preferentially in cell cycle arrested tumor cells, e.g., in tumor cells from children with acute lymphoblastic leukemia upon knockdown of cyclinE , 2013, , .		0
96	Genetic Profiling By Targeted, Deep Resequencing Confirms That a Murine Xenograft Model Of Acute Myeloid Leukemia (AML) Recapitulates The Mutational Landscape Of The Human Disease and Provides Evidence For Clonal Heterogeneity and Clonal Evolution. Blood, 2013, 122, 49-49.	1.4	2
97	Key Nodes In FLT3 Dependent Signaling Determine Growth and Survival Of Childhood Acute Lymphoblastic Leukemia. Blood, 2013, 122, 2508-2508.	1.4	0
98	Dual Inhibition Of PI3K and mTOR Shows Preferential Antileukemic Activity In MLL-Rearranged AML. Blood, 2013, 122, 818-818.	1.4	1
99	Activation of DNA damage response by antitumor therapy counteracts the activity of vinca alkaloids. Anticancer Research, 2013, 33, 5273-87.	1.1	3
100	NOXA as critical mediator for drug combinations in polychemotherapy. Cell Death and Disease, 2012, 3, e327-e327.	6.3	18
101	TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood, 2012, 119, 3440-3449.	1.4	55
102	Efficient RNA interference in patients' acute lymphoblastic leukemia cells amplified as xenografts in mice. Cell Communication and Signaling, 2012, 10, 8.	6.5	5
103	RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia, 2012, 26, 1020-1029.	7.2	62
104	The adaptor protein FADD and the initiator caspase-8 mediate activation of NF-κB by TRAIL. Cell Death and Disease, 2012, 3, e414-e414.	6.3	49
105	In Vivo Imaging Enables High Resolution Preclinical Trials on Patients' Leukemia Cells Growing in Mice. PLoS ONE, 2012, 7, e52798.	2.5	39
106	Leukemia-initiating cells of patient-derived acute lymphoblastic leukemia xenografts are sensitive toward TRAIL. Blood, 2012, 119, 4224-4227.	1.4	21
107	Abstract 2278: Smac mimetic primes FADD- or caspase-8-deficient leukemia cells for TNF $\hat{l}\pm$ -induced necroptosis and overcomes apoptosis resistance. , 2012, , .		0
108	Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor I±-Induced Necroptosis. Neoplasia, 2011, 13, 971-IN29.	5.3	86

#	Article	IF	CITATIONS
109	Optimized anti–tumor effects of anthracyclines plus Vinca alkaloids using a novel, mechanism-based application schedule. Blood, 2011, 118, 6123-6131.	1.4	25
110	Mitochondrial Thioredoxin Reductase Is Essential for Early Postischemic Myocardial Protection. Circulation, 2011, 124, 2892-2902.	1.6	70
111	Important Role of Caspase-8 for Chemosensitivity of ALL Cells. Clinical Cancer Research, 2011, 17, 7605-7613.	7.0	18
112	Abstract 4692: IAP inhibitors prime childhood leukemia cells to chemotherapy-induced apoptosis in a strictly RIP1-dependent manner and exert anti-leukemic activity in a NOD/SCID mouse model in vivo. , 2011, , .		0
113	TRAIL Is Active Against Leukemia Stem Cells and Leukemia-Initiating Cells of Children with Acute Lymphoblastic Leukemia. Blood, 2011, 118, 2953-2953.	1.4	0
114	Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95â€induced apoptosis. International Journal of Cancer, 2010, 126, 2216-2228.	5.1	32
115	A score predicting late-onset sepsis in very low birthweight infants. Journal of Neonatal-Perinatal Medicine, 2010, 3, 317-324.	0.8	2
116	450 Glucocorticoids frequently induce survival and growth in tumor cells by activation of classical survival and proliferation pathways which should be avoided during anti-cancer therapy. European Journal of Cancer, Supplement, 2010, 8, 142.	2.2	0
117	In Vivo Imaging In the Individualized Mouse Model of Acute Lymphoblastic Leukemia Enables Highly Sensitive and Continuous Follow up of Patient-Derived Xenografts. Blood, 2010, 116, 3259-3259.	1.4	0
118	Patient-Derived Stem Cell Surrogates of Acute Lymphoblastic Leukemia Are Sensitive towards TRAIL-Induced Apoptosis Which Is Determined at the Level of Receptor-Proximal Signaling. Blood, 2010, 116, 2133-2133.	1.4	0
119	Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2–mediated resistance. Blood, 2009, 113, 1710-1722.	1.4	127
120	Spongistatin 1: a new chemosensitizing marine compound that degrades XIAP. Leukemia, 2008, 22, 1737-1745.	7.2	42
121	Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells. Oncogene, 2008, 27, 783-793.	5.9	58
122	267 POSTER Small molecule XIAP inhibitors enhance TRAIL- or anticancer drug-induced apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. European Journal of Cancer, Supplement, 2008, 6, 87.	2.2	1
123	Small Molecule XIAP Inhibitors Cooperate with TRAIL to Trigger Apoptosis in Childhood Acute Leukemia Cells and Overcome Bcl-2-Mediated Resistance. Blood, 2008, 112, 857-857.	1.4	2
124	CD95/Apo-1/Fas: independent cell death induced by doxorubicin in normal cultured cardiomyocytes. Cancer Immunology, Immunotherapy, 2005, 54, 655-662.	4.2	12
125	Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Mediated Proliferation of Tumor Cells with Receptor-Proximal Apoptosis Defects. Cancer Research, 2005, 65, 7888-7895.	0.9	73
126	Betulinic acid-induced apoptosis in leukemia cells. Leukemia, 2004, 18, 1406-1412.	7.2	121

#	Article	IF	CITATIONS
127	Cooperation of betulinic acid and TRAIL to induce apoptosis in tumor cells. Oncogene, 2004, 23, 7611-7620.	5.9	67
128	Cell death induction by betulinic acid, ceramide and TRAIL in primary glioblastoma multiforme cells. Acta Neurochirurgica, 2004, 146, 721-9.	1.7	28
129	TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-κB. Oncogene, 2003, 22, 3842-3852.	5.9	262
130	Involvement of CD95/Apo1/Fas in Cell Death After Myocardial Ischemia. Circulation, 2000, 102, 915-920.	1.6	206
131	JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death and Differentiation, 1999, 6, 130-135.	11.2	78
132	Betulinic acid: A new cytotoxic agent against malignant brain-tumor cells. , 1999, 82, 435-441.		171
133	CD95 Ligand (Fas-L/APO-1L) and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Mediate Ischemia-Induced Apoptosis in Neurons. Journal of Neuroscience, 1999, 19, 3809-3817.	3.6	406
134	Betulinic acid: a new chemotherapeutic agent in the treatment of neuroectodermal tumors. Klinische Padiatrie, 1999, 211, 319-322.	0.6	43
135	MycN and IFNÎ ³ cooperate in apoptosis of human neuroblastoma cells. Oncogene, 1998, 17, 339-346.	5.9	91
136	TRAIL/Apo-2-ligand-induced apoptosis in human T cells. European Journal of Immunology, 1998, 28, 143-152.	2.9	271
137	Interleukin-1 receptor antagonist and interleukin-6 for early diagnosis of neonatal sepsis 2 days before clinical manifestation. Lancet, The, 1998, 352, 1271-1277.	13.7	240
138	Inhibition of Nuclear Factor κB Activation Attenuates Apoptosis Resistance in Lymphoid Cells. Blood, 1998, 91, 4624-4631.	1.4	222
139	TRAIL/Apo-2-ligand-induced apoptosis in human T cells. , 1998, 28, 143.		2
140	Inhibition of Nuclear Factor l̂ºB Activation Attenuates Apoptosis Resistance in Lymphoid Cells. Blood, 1998, 91, 4624-4631.	1.4	30
141	Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood, 1998, 91, 4624-31.	1.4	68
142	TRAIL induces apoptosis and activation of NFkappaB. European Cytokine Network, 1998, 9, 687-8.	2.0	41