
Rutsuko Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8028341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nature Neuroscience, 2004, 7, 389-397.	14.8	427
2	Dissociation in Conditioned Dopamine Release in the Nucleus Accumbens Core and Shell in Response to Cocaine Cues and during Cocaine-Seeking Behavior in Rats. Journal of Neuroscience, 2000, 20, 7489-7495.	3.6	414
3	Dopamine Release in the Dorsal Striatum during Cocaine-Seeking Behavior under the Control of a Drug-Associated Cue. Journal of Neuroscience, 2002, 22, 6247-6253.	3.6	391
4	The hippocampal–striatal axis in learning, prediction and goal-directed behavior. Trends in Neurosciences, 2011, 34, 548-559.	8.6	252
5	Functional Interaction between the Hippocampus and Nucleus Accumbens Shell Is Necessary for the Acquisition of Appetitive Spatial Context Conditioning. Journal of Neuroscience, 2008, 28, 6950-6959.	3.6	197
6	Corticostriatal Interactions during Learning, Memory Processing, and Decision Making. Journal of Neuroscience, 2009, 29, 12831-12838.	3.6	183
7	The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies. Behavioural Brain Research, 2016, 313, 345-357.	2.2	127
8	Opposing Roles of Nucleus Accumbens Core and Shell Dopamine in the Modulation of Limbic Information Processing. Journal of Neuroscience, 2011, 31, 6001-6007.	3.6	85
9	The hippocampus and appetitive Pavlovian conditioning: Effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus, 2005, 15, 713-721.	1.9	78
10	Examining the Role of the Human Hippocampus in Approach–Avoidance Decision Making Using a Novel Conflict Paradigm and Multivariate Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2015, 35, 15039-15049.	3.6	71
11	Selective excitotoxic lesions of the hippocampus and basolateral amygdala have dissociable effects on appetitive cue and place conditioning based on path integration in a novel Y-maze procedure. European Journal of Neuroscience, 2006, 23, 3071-3080.	2.6	68
12	Ventral Hippocampal CA1 and CA3 Differentially Mediate Learned Approach-Avoidance Conflict Processing. Current Biology, 2018, 28, 1318-1324.e4.	3.9	68
13	The ventral hippocampus, but not the dorsal hippocampus is critical for learned approachâ€avoidance decision making. Hippocampus, 2016, 26, 530-542.	1.9	65
14	Reward Cues in Space: Commonalities and Differences in Neural Coding by Hippocampal and Ventral Striatal Ensembles. Journal of Neuroscience, 2012, 32, 12444-12459.	3.6	45
15	Ventral, but not dorsal, hippocampus inactivation impairs reward memory expression and retrieval in contexts defined by proximal cues. Hippocampus, 2017, 27, 822-836.	1.9	41
16	Caudal Nucleus Accumbens Core Is Critical in the Regulation of Cue-Elicited Approach-Avoidance Decisions. ENeuro, 2017, 4, ENEURO.0330-16.2017.	1.9	31
17	Prelimbic and infralimbic cortical inactivations attenuate contextually driven discriminative responding for reward. Scientific Reports, 2019, 9, 3982.	3.3	29
18	The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective. Neuropsychologia, 2020, 137, 107300.	1.6	27

Rutsuko Ιτο

#	Article	IF	CITATIONS
19	Amphetamine Exposure Selectively Enhances Hippocampus-Dependent Spatial Learning and Attenuates Amygdala-Dependent Cue Learning. Neuropsychopharmacology, 2010, 35, 1440-1452.	5.4	24
20	Excitotoxic lesions of the infralimbic, but not prelimbic cortex facilitate reversal of appetitive discriminative context conditioning: the role of the infralimbic cortex in context generalization. Frontiers in Behavioral Neuroscience, 2014, 8, 63.	2.0	24
21	Aberrant approach-avoidance conflict resolution following repeated cocaine pre-exposure. Psychopharmacology, 2015, 232, 3573-3583.	3.1	24
22	The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neuroscience and Biobehavioral Reviews, 2022, 135, 104569.	6.1	19
23	Double dissociation of learned approach–avoidance conflict processing and spatial pattern separation along the dorsoventral axis of the dentate gyrus. Hippocampus, 2020, 30, 596-609.	1.9	18
24	Opposing roles of prelimbic and infralimbic dopamine in conditioned cue and place preference. Psychopharmacology, 2014, 231, 2483-2492.	3.1	16
25	Different dosing regimens of repeated ketamine administration have opposite effects on novelty processing in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 69, 1-10.	4.8	15
26	Dissociative effects of dorsomedial striatum D1 and D2 receptor antagonism in the regulation of anxiety and learned approach-avoidance conflict decision-making. Neuropharmacology, 2019, 146, 222-230.	4.1	15
27	Relationship between voluntary ethanol drinking and approach-avoidance biases in the face of motivational conflict: novel sex-dependent associations in rats. Psychopharmacology, 2021, 238, 1817-1832.	3.1	10
28	Dissociable roles of the nucleus accumbens D1 and D2 receptors in regulating cue-elicited approach-avoidance conflict decision-making. Psychopharmacology, 2018, 235, 2233-2244.	3.1	8
29	Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict. Nature Communications, 2022, 13, .	12.8	7
30	The ventral hippocampus is necessary for cue-elicited, but not outcome driven approach-avoidance conflict decisions: a novel operant choice decision-making task. Neuropsychopharmacology, 2021, 46, 632-642.	5.4	6
31	Hippocampal Projections to the Ventral Striatum: From Spatial Memory to Motivated Behavior. , 2014, , 497-516.		6
32	Ventral hippocampus inactivation enhances the extinction of active avoidance responses in the presence of safety signals but leaves discrete trial operant active avoidance performance intact. Hippocampus, 2020, 30, 913-925.	1.9	4
33	Perirhinal Cortex is Involved in the Resolution of Learned Approach–Avoidance Conflict Associated with Discrete Objects. Cerebral Cortex, 2021, 31, 2701-2719.	2.9	4
34	Cortico-Striatal Control over Adaptive Goal-Directed Responding Elicited by Cues Signaling Sucrose Reward or Punishment. Journal of Neuroscience, 2022, 42, 3811-3822.	3.6	4
35	Repeated Cocaine Exposure Attenuates the Desire to Actively Avoid: A Novel Active Avoidance Runway Task. Frontiers in Behavioral Neuroscience, 2018, 12, 108.	2.0	3
36	The ventral hippocampus CA3 is critical in regulating timing uncertainty in temporal decision-making. Cell Reports, 2021, 34, 108694.	6.4	3

#	Article	IF	CITATIONS
37	Exploring the interaction between approach-avoidance conflict and memory processing. Memory, 2020, 28, 141-156.	1.7	2